The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation

Nikolay Bogoychev Pinzhen Chen

University of Edinburgh {n.bogoych,pinzhen.chen}@ed.ac.uk

Machine translation suffers badly from domain mismatch.

Source Jetzt bin ich nicht mal würdig, ein Paladin zu sein.						
out of domain model	In very rare cases, cladribine may not be a palonosetron.					
in domain model	Now I'm not even worthy of being a paladin.					

Machine translation suffers badly from domain mismatch.

Source Jetzt bin ich nicht mal würdig, ein Paladin zu sein.						
out of domain model In very rare cases, cladribine may not be a palon						
in domain model	Now I'm not even worthy of being a paladin.					

Exposure bias kills quality. How can we make it better?

Existing solutions

• MRT training

Existing solutions

- MRT training
- Training towards BLEU

Existing solutions

- MRT training
- Training towards BLEU
- Minimum Bayesian risk decoding

All of those are computationally expensive. Can we do something cheaper

Simple domain adaptation

Lexical shortlisting is used to speed up inference. Full Output Layer

<unk></unk>
-
and
is
the
grass
red
green
blue
house

Lexical shortlisting is used to speed up inference. Full Output Layer

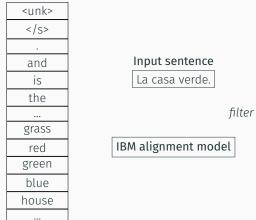


Input sentence

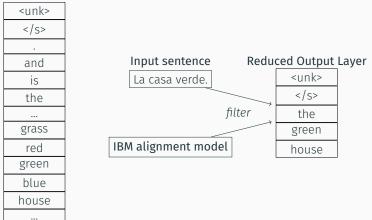
La casa verde.

IBM alignment model

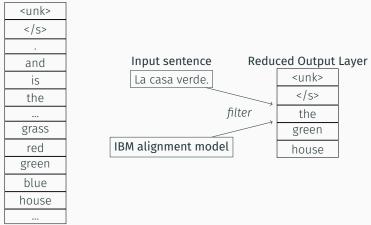
Lexical shortlisting is used to speed up inference. Full Output Layer



Lexical shortlisting is used to speed up inference. Full Output Layer



Lexical shortlisting is used to speed up inference. Full Output Layer



Can the IBM model help domain adaptation

n-best list reranking is a known post-processing steps.

- Inter-hypotheses similarity can reflect a model's confidence.
- Pick the hypothesis that is the most similar to others by re-ranking.
- Selected sentBLEU as the similarity metric after trials.

An illustration of re-ranking, ignoring the original hypothesis score.

	System outpu	After re-ranking	
Rank	Hypothesis	x-entropy	Alter le lanking
Νάτικ	hypothesis	per word	
1	mental :	-1.45	from the age of :
2	from the age of :	-1.63	from the age of 1
3	from the age of 1	-1.74	
4	from the age of years :	-1.78	
5	from the tests :	-1.85	
6	lot	-2.27	

- OPUS German-English dataset.
- In-domain 1M *medical* domain training sentences.
- Out-of-domain test sets law, subtitles, it, koran
- Balance Vocabulary. Include out of domain data when training BPE

Domain		trained on <i>i</i>			BPE trained on all except subtitles			
Domain	baseline	shortlist	re-rank	both	baseline	shortlist	re-rank	both
medical	60.0	59.5	60.3	59.1	61.4	58.2	57.6	60.4

Domain	BPE trained on <i>medical</i> only					BPE trained on all except subtitles			
Domain	baseline	shortlist	re-rank	both	baseline	shortlist	re-rank	both	
medical	60.0	59.5	60.3	59.1	61.4	58.2	57.6	60.4	
Koran	0.9	1.0	0.7	1.1	0.8	0.9	0.9	1.0	

Domain		trained on <i>i</i>			BPE trained on all except <i>subtitles</i>			
Domain	baseline	shortlist	re-rank	both	baseline	shortlist	re-rank	both
medical	60.0	59.5	60.3	59.1	61.4	58.2	57.6	60.4
Koran	0.9	1.0	0.7	1.1	0.8	0.9	0.9	1.0
law	19.6	20.6	16.6	17.8	17.8	19.3	19.8	20.8

Domain	BPE	trained on <i>i</i>	medical or	nly	BPE trained on all except subtitles			
Domain	baseline	shortlist	re-rank	both	baseline	shortlist	re-rank	both
medical	60.0	59.5	60.3	59.1	61.4	58.2	57.6	60.4
Koran	0.9	1.0	0.7	1.1	0.8	0.9	0.9	1.0
law	19.6	20.6	16.6	17.8	17.8	19.3	19.8	20.8
IT	15.0	16.3	10.1	11.5	15.7	18.0	15.3	17.8
subtitles	2.8	3.1	1.4	1.9	2.6	2.8	2.4	2.8

Having a balanced vocabulary is key

Domain	System	1- to 4-gram precisions				Brevity penalty	BLEU ($ riangle$)
	baseline	53.0	27.5	16.9	11.0	0.778	17.8
law	shortlist	56.1	29.4	17.9	11.4	0.804	19.3 (+1.5)

Domain	System	1- to	o 4-grar	n precis	Brevity penalty	BLEU (△)	
	baseline	53.0	27.5	16.9	11.0	0.778	17.8
law	shortlist	56.1	29.4	17.9	11.4	0.804	19.3 (+1.5)
law	re-rank	51.4	26.4	16.1	10.5	0.906	19.8 (+2.0)
	both	53.1	27.6	16.7	10.7	0.919	20.8 (+3.0)

- Shortlisting improves unigram accuracy :)
- \cdot Reranking preys on BLEU length penalty : (

The negative results

	Microsoft WMT19				
	baseline	shortlist			
medical	14.4	14.4			
Koran	0.0	0.0			
law	8.7	8.7			
IT	15.4	15.4			
subtitles	1.0	1.0			

IBM model doesn't offer meaningful performance boost here.

Very low-resource Burmese-English (18k sentence pairs on sports news).

	baseline	shortlist
news (in-domain)	18.00	15.7
Bible	0.2	0.2

Y it no work : (

In a nutshell: Vocabulary mismatch

Domain	law	medical	subtitles [†]	IT	Koran
Number of sentences	695k	1M	1M	372k	529k

In a nutshell: Vocabulary mismatch

Domain	law	medical	subtitles [†]	IT	Koran
Number of sentences	695k	1M	1M	372k	529k
Avg. original sentence length	22.1	12.5	8.0	7.5	20.4
Avg. BPE sentence length	30.4	14.3	11.1	12.7	24.1

In a nutshell: Vocabulary mismatch

Domain	law	medical	subtitles [†]	IT	Koran
Number of sentences	695k	1M	1M	372k	529k
Avg. original sentence length	22.1	12.5	8.0	7.5	20.4
Avg. BPE sentence length	30.4	14.3	11.1	12.7	24.1
Vocab size, appearing >20 times	34k	36k	30k	15k	20k
Vocab overlap with medical	11.5k	36k	9.0k	5.8k	5.1k

⁺ The *subtitles* corpus was sampled down from 20M to 1M sentence pairs.

Sample sentence pairs from *subtitles* with BPE segmentation.

German und Z@@ eth@@ rid ? nur einen Strei@@ f@@ sch@@ uss . English and , Z@@ eth@@ rid , just gr@@ aze it . Sample sentence pairs from *subtitles* with BPE segmentation.

German und Z@@ eth@@ rid ? nur einen Strei@@ f@@ sch@@ uss . English and , Z@@ eth@@ rid , just gr@@ aze it .

How can the IBM model learn any meaningful alignment?

• Fast and cheap domain adaptation strategies.

- Fast and cheap domain adaptation strategies.
- Shorlisting does offer genuine improvement :)

- Fast and cheap domain adaptation strategies.
- Shorlisting does offer genuine improvement :)
- $\cdot\,$ Reranking preys on BLEU length penalty : (

- Fast and cheap domain adaptation strategies.
- \cdot Shorlisting does offer genuine improvement :)
- Reranking preys on BLEU length penalty : (
- \cdot Doesn't work on high resource setting : (
- $\cdot\,$ Doesn't work with large domain mismatch : (

- Fast and cheap domain adaptation strategies.
- Shorlisting does offer genuine improvement :)
- Reranking preys on BLEU length penalty : (
- $\cdot\,$ Doesn't work on high resource setting : (
- Doesn't work with large domain mismatch : (
- The main issue is vocabulary mismatch and subword segmentation : (

Thank you for your time!