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Abstract

Parallel systems have been widely adopted in the field of machine translation, because
the raw computational power they offer is well suited to this computationally intensive
task. However programming for parallel hardware is not trivial as it requires redesign
of the existing algorithms. In my thesis I design efficient algorithms for machine trans-
lation on parallel hardware. I identify memory accesses as the biggest bottleneck to
processing speed and propose novel algorithms that minimize them. I present three dis-
tinct case studies in which minimizing memory access substantially improves speed:
Starting with statistical machine translation, I design a phrase table that makes de-
coding ten times faster on a multi-threaded CPU. Next, I design a GPU-based n-gram
language model that is twice as fast per £ as a highly optimized CPU implementation.
Turning to neural machine translation, I design new stochastic gradient descent tech-
niques that make end-to-end training twice as fast. The work in this thesis has been

incorporated in two popular machine translation toolkits: Moses and Marian.

Lay Summary

Machine translation systems, such as Google translate and Microsoft translator, Baidu
fanyi, etc, have become increasingly more popular in the recent years. Machines trans-
late more than one billion words daily, however producing said translations is quite
computationally expensive and requires hundreds of millions of computer chips work-
ing around the clock. In my thesis, I explain why machine translation systems require
so much computational power. I also carefully examine the characteristics of mod-
ern computer chips and note that often the speed of memory is the limiting factor for
achieving faster performance. I use that knowledge to design algorithms that can make
machine translation much more efficient on modern hardware, increasing translation

speed up to ten fold compared to previous state of the art work.
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Chapter 1
Introduction

Every day, Twitter users write 500 million tweets, Facebook users produce 734 mil-
lion comments, and Google news serves stories from more than 50 thousand news
agencies Three billion people can access this text, but they can each understand
only a small fraction of the knowledge it contains, because most of it is in one of
the thousands of languages they don’t speak. In order to make the world’s knowl-
edge accessible to everyone, it must be translated into everyone’s language. To do so,
translation must be automated, and the demand for this automation is clear: Google
translate serves more than 200 million people a day, processing more text than all the
world’s human translators process in a yearE] The scale of machine translation requires
immense computational cost, hence financial cost. Cost also limits the speed of ma-
chine translation research, where the goal is to improve the quality of next generation
systems. To produce a single experiment, a machine translation researcher must first
train a system, which requires translating more than 1 billion sentences using a neural
network[] To compare two systems, this process must be repeated twice. To compare
two systems on five languages — ten times. To truly improve the quality may take hun-
dreds of such experiments. The high computational cost of machine translation leads
to low throughput and is a bottleneck to improving its quality as well as availability.
Conveniently, advancements in computer hardware have kept up with the ever-

increasing amount of data available. However the nature of these advancements has

Thttp://www.internetlivestats.com/twitter-statistics/
Zhttps://www.dsayce.com/social-media/tweets-day/
3https://www.quora.com/How-many-Facebook-posts-are-shared-every-day
“http://thesocialskinny.com/tag/social-media-statistics/
Shttps://www.theguardian.com/technology/2013/feb/25/1
Shttp://www.cnet.com/news/google-translate-now-serves-200-million-people-daily/

TFor example, Google (Wu et al., 2016)) reported that training their system takes 1 week on 8 GPUs.
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14 Chapter 1. Introduction

changed. More than a decade ago the application’s performance would improve by

upgrading the CPU to a newer one due to increased clock frequency (Figure[I.1).
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Figure 1.1: Speed improvement with CPU generation upgrades. Each tick-tock (spike) on the graph

represents a clock cycle.

New generation hardware fundamentally differs from older generations, because it
is highly parallel, with several slower cores per chip instead of one faster one (Figure
[1.2). This allows for higher theoretical performance, but only if the application is
parallelizeable, which is not always the case. In contrast, a faster clocked CPU would

universally yield increased performance regardless of the application design.
work

Core 1, 2.6 GHz ~"ANAANANANANANANANANANNNNANNA~

load
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workload
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time

Figure 1.2: Splitting the workload in two even parts work and load over two CPUs results in less

wall-clock time necessary for completion of the task, even if the individual CPUs are slower.

In 2010, consumer-grade CPUs had four cores for top-of-the line models, with
manufacturers focusing mostly on dual-core high clock solutions. Professional grade
CPUs were manufactured with up to eight cores. General purpose graphics process-
ing units (GPGPUs) were just being rolled out, with only a few proof-of-concept ap-

plications being written. Mobile phones used slow single core processors. In 2018,
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Intel’s latest generation of consumer grade hardware offers at least 4 cores and up to
18 cores. AMD’s latest generation of consumer grade hardware has gone even more
parallel, starting from 6 cores per chip, and up to 32. Mobile hardware is no different,
with latest Apple and Android devices featuring dual-cluster multi-core solutions with
one high performance multi-core CPU and one power efficient multi-core CPUE In
the GPU world the trends are similar with every consecutive generation having more
streaming multiprocessors and more cores: From 15 and 2,880 in 2014ﬂ to 80 and
5,120 in 201 8 The trends is to go towards higher core count, rather than faster clock
frequency due thermal and physical limits in the CPU design.

Hardware has changed dramatically over the past 8 years, but software has not
changed much over the same timeframe. Machine translation toolkits are seldom opti-
mized for parallel hardware because this is a difficult task. Most algorithms are inher-
ently sequential in nature, and as such it is difficult to extract computational parts that
can run concurrently (Perrone, 2009). In order for any application to scale (or to even
be compatible) with future hardware, it must be redesigned with parallelism in mind
(Figure and also with the idea that parallelism in the future is likely to increase,
while single-core performance is not likely to increase much.

To maximize throughput on modern parallel hardware, the programmer must en-
sure that all cores are working at all times. But achieving this is difficult; due to slow

memory accesses and data dependencies, multi-core CPUs frequently idle:

e Main memory is slow to access and could lead to processors idling. If the pro-
cessor needs to fetch data, ideally the data should be located in the cache, which
takes just a few cycles to access. However caches are just a few MB in size,
whereas the data structures we work with in machine translation are multiple
GB in size and do not fit inside. When main memory needs to be accessed, there
would be a considerable amount of time where the processor is unable to do
any useful work (Figure [I.3). In order to circumvent this, programmers need to

miminize memory accesses and reuse memory as much as possible.

e Data dependencies between different CPUs also reduces performance. It is
often necessary for one of the processors to access data computed by the other.

In this case usually one of the cores needs to wait for the other to finish and

8 Adreno 845/Apple All
9Titan Black
10Tjtan V



16 Chapter 1. Introduction

in that time no useful work can be done (Figure [.4). While it is impossible to
completely avoid data dependencies, programmers try to minimize them in order

to avoid performance degradation.

work load

\
LARVEAR o

work load

time

Figure 1.3: Our processors cores need to compute two workloads. The processor has access to small
amount of fast memory (cache) which allows it to quickly load new data to its registers in order to
perform the computation, which serves to complete the first part of the workload task (The green dotted
line represents memory access). However when the processor needs to go to main memory, in order to
fetch the data necessary for the second part of the task load, there is going to be a period of inactivity

(represented by the black dotted line) where the computation is stalled due to waiting on memory.

gap
work -~ - ~  morework

Core 1 ANNNNZ N ANNNNN-

load .
Core 2 A VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV

time

Figure 1.4: Core one and two have split the workload, between each other in order to complete it
faster. However, before Core 1 can continue to do morework, it needs to wait for the results of the Core
2 computation, which creates a processing gap where core 1 idling. Multiple synchronization points

could easily kill any theoretical multi-core performance benefits.
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This thesis shows that data structures and algorithms can be designed to sub-
stantially improve the speed of machine translation systems on modern parallel

hardware, by minimizing slow memory accesses and synchronization points.

1.1 Thesis structure

This thesis demonstrates the value of designing new algorithms to minimize memory
accesses in three separate use cases in machine translation. In each I identify perfor-
mance bottlenecks related to memory access patterns, and implement an algorithmic
solution catered towards a contemporary parallel setting. The first part of my work is
focused on statistical machine translation and the final part is focused on neural ma-
chine translation.

In Chapter 2, I provide brief background on parallel hardware and machine trans-
lation.

In Chapter 3, I introduce a novel phrase table for statistical machine translation
that scales linearly with the increase of core count. Unlike previous implementations,
my design addresses the needs of contemporary hardware by focusing on efficient
sequential memory accesses, rather than compression. Using this new phrase table,
I achieve 10 times faster decoding speed in parallel setting, largely because of the
reduced thread contention (Bogoychev and Hoang, |2016; Hoang et al.,[2016).

In Chapter 4, I introduce the first GPU n-gram language model and I evaluate its
performance compared to KenLM (Heafield, [2011), a highly optimized CPU imple-
mentation. On the GPU, memory is limited, and every memory access is costly. My
language model has a small memory footprint and minimizes the number of memory
accesses, which I accomplish using a novel data structure: a BTree-backed trie. This
allows for thousands of queries to be executed concurrently on the GPU. The language
model achieves 65.5M queries per second in batch mode, which is several times more
cost efficient in terms of hardware price than doing the language model queries on
CPU (Bogoychev and Lopez, 2016).

In Chapter 5, I show how to improve the speed of multi-GPU asynchronous train-
ing of a recurrent neural machine translation systems by reducing the frequency of
GPU communication. Reducing the communication frequency leads to increased train-

ing performance, but worsens the model convergence. I introduce additional methods

n this case, and everywhere else in the thesis, the word performance is used to mean the speed with

which the hardware solves the problem. Where translation quality is concerned I have used quality
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to tackle the convergence issue and using those I achieve two times faster end-to-end
training of a machine translation model at no cost in model quality. Those improve-
ments hold across multiple language pairs and neural network configurations (Bogoy-
chev et al., [2018]).

1.2 Contributions

1. T'have published three papers as a first author (Bogoychev and Hoang, 2016; |Bo-
goychev and Lopez, [2016; |Bogoycheyv et al., 2018) and collaborated on another
two (Hoang et al., 2016} Junczys-Dowmunt et al., 2018]).

2. T have implemented a CPU phrase table for statistical machine translation, that
is available both for stand alone usag and as the default phrase table in Moses2
(Hoang et al., 2016)), a highly optimized statistical machine translation decoderE-I

3. I have implemented the first GPU based n-gram language modelm

4. Thave implemented delayed gradient updates for the Marian NMT toolkit (Junczys-
Dowmunt et al., 2018)), which permits faster training and helps very large models

achieve a reasonable mini-batch size.

5. T have worked on the problem of multi-node neural network training on com-
putational clusters with varying connection speed. Together with my collabora-
tors we have implemented a design that minimizes the communication between

nodes in order to achieve maximum training speed.

2https://github.com/XapallaMnu/ProbingPT
Bhttps://github.com/moses-smt/mosesdecoder/
https://github.com/XapallaMnu/gLM



Chapter 2

Parallel programming and Machine

Translation

In the 1960s and 1970s, two important trends for the development of computer hard-
ware were observed: Moore’s law (Moore, |1965) and Dennard scaling (Dennard et al.,
1974). The former establishes that the number of transistors on chips would double ev-
ery 1.5 years and the latter that the performance per watt would grow exponentially at
roughly the same rate. Those laws have influenced tremendously the field of computer
science, because they predicted that the performance of processors would increase over
the years. Software would run faster just by putting it on a newer processor. Moore’s
law had to be revised several times, because the growth rate it predicted originally
decreased over time, but Dennard scaling started to break down completely around
2005-2007 (Figure[2.1). There are several reasons for that:

1. With the increased voltage and transistor density on a single chip, it became

impossible to dissipate the heat quickly enough (Olukotun et al., |1996)).

2. With the increased logic circuits and components on a single chip, it became
impossible to hide the delay in communication between gates placed physically
far away from each other. In order to solve this problem, a greater percentage
of the increased transistor count go towards wiring, rather than additional logic
gates (Olukotun et al.,|1996). A more efficient use of the extra circuits available
is to put them to use in an extra processor core. Putting the extra circuits in
an additional core allows for overall higher theoretical performance of the new

processor, but the burden for achieving it is placed on the programmer.

3. There are physical limits on the delay between logic gates: Signal can’t pass

19



20 Chapter 2. Parallel programming and Machine Translation

through them faster than the speed of light (McFarland et al., [1995)).
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Figure 2.1: Single core CPU performance on a simple Integer benchmark (SPECintCPU) compared to
a 1977 VAX 11-780 processor. Single core scaling breaks down completely after 2015. Image source:

Hennessy and Patterson| m

Furthermore the nature of the workload has changed the past 20 years. Greater pro-
cessing power and advances in hardware have given birth to the era of big data. In this
era, single instruction, multiple data (SIMD) workloads are increasingly common and
multi-core processors are better suited for those. This development, together with the
aforementioned difficulties in scaling single-core processors, has swayed chipmakers
in designing hardware that is better suited to those workloads: multi-core and mas-

sively parallel (vector) processors.

2.1 Parallel hardware

Parallel hardware has been conceived for the first time in the mid-1950s and over half
a century has become completely integrated even in the most basic consumer level
hardware. Parallelism in hardware is found on multiple levels: On a single chip, on a

single machine, and on a single network.

2.1.1 On a single chip

Superscalar architecture Contemporary processors are capable of executing multi-

ple instructions concurrently. There are several ways to take advantage of those capa-
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bilities:

¢ In software through out-of-order execution where multiple instructions can be

executed in any order as long as this doesn’t influence final outcome.

e In the processor itself by speculatively executing branches in order to avoid

stalls.

e By using hyperthreads and letting the OS schedule additional work on the pro-

cessor. I will revisit the concept of hyperthreads in detail in Chapter 3.

Identifying instructions that can run in parallel is, however, a difficult task and fre-

quently the superscalar capabilities are underutilized.

Symmetric multiprocessors Symmetric multiprocessors are the most common type
of parallel hardware that is used today. They are called symmetric, because as far as
the programmer is concerned, all CPUs are equal and have equal access to the main
memory. They can be used for any type of parallel operations from multiple instruc-
tions, multiple data (MIMD), such as producer-consumer problem to single instruction,

multiple data (SIMD), such matrix multiplication.

Massively Parallel hardware Massively parallel hardware is characterized by hav-
ing a large number of processors on a single chip, which are usually not completely
independent. For example, Nvidia Pascal Titan X is a graphics processing unit (GPU)
that contains 3,584 cores that are controlled by 28 streaming multiprocessors, which
means at most 28 different instructions can be executed at a time. Another name used
for this type of hardware is vector processor and they are specifically designed for
SIMD workloads. Individual GPU cores are simple, lacking complicated branch pre-
dictors or caches, but because of the sheer number of them, collectively they offer
much higher theoretical performance than CPUs, given a suitable workload.
Massively parallel architectures share a lot characteristics, because they are de-
signed to tackle SIMD problems, and as such an algorithm that is efficient on one
massively parallel architecture is likely to be efficient on another: An algorithm de-
signed for a GPU would map well onto Xeon Phi, a massively parallel CPU board

with 57-72 cores manufactured by Intel.
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2.1.2 On a single Machine

Most workstation class computers nowadays come with independent CPUs and mul-
tiple GPUs. The CPUs are connected through a very fast interconnect and appear to
the programmer in the same way a symmetric multiprocessor would. However as the
RAM is split between the CPUs (Figure accessing memory that was processed
by a different physical CPU is more expensive (For precise numbers refer to Table
2.1). The same applies to use multiple GPUs in the computation: While an additional
GPU offers theoretically doubled performance, in practise it is difficult to achieve it
because of the large cost (Table [2.1)) of inter GPU communication. I look specifically
at multi-GPU scaling in Chapter 5.

2.1.3 On a single network

Just as we can have multiple computational units within a single machine, we could
have multiple machines connected over a network forming a distributed computa-
tional cluster. Computational clusters allow for potentially thousands of GPUs and
CPUs to work together towards a common computation, however programming for
them is challenging: When working with distributed hardware memory access to dif-
ferent units is non-uniform (Figure [2.2)—that is to say, memory is organized in a hier-
archical manner where the latency of remote memory is much higher than the latency
of local memory and the speed of local memory is much higher than the speed of
remote memory. As such, algorithms must be designed in a manner that minimizes

accesses to the slow remote memory.

2.2 Why parallel programming is hard

There is a subset of programming problems which are labelled embarrassingly parallel
that exhibit perfect parallelism. They are characterized by lack of communication
between cores, which means that no synchronization points are necessary and the cores
operate completely independently. An example of perfectly parallel problem is neural
network inference, where one can generate predictions using the neural network on as
many cores as they want in a SIMD manner since the neural network parameters are
read only and there is no inter-core communication. Unfortunately, most real world
problems require communication in parallel setting and also exhibit difficulties with

balancing work evenly between the available computational units, which is notoriously
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Figure 2.2: Typical memory hierarchy on a computational cluster. Each Node on the cluster has mul-
tiple CPUs, each of them has multiple physical cores. Each core has local cache. Each CPU controls a
portion of the system memory. Different CPUs communicate to each other’s memory through the sys-
tem bus and communication speed depends on their physical distance, among other factors. In addition
to that all nodes are connected through a network and can access each-other’s memory resources, but at

a much higher latency and lower speed.

difficult (Perrone, 2009).

Parallel programming requires programmers to deal with issues that do not exist in

single threaded setting:

Data hazards occur when data written by one thread needs to be read by another.
When those threads are scheduled on different cores (or processors) writes need
to be propagated through memory in order to be visible to everyone, which re-
quires explicit synchronization or use of atomic instructions, both of which are
expensive: Synchronization leads to CPUs idling, and atomic instructions block
any sort of instruction-level parallelism, which is very important for nowadays’

superscalar processors to achieve peak performance (Schweizer et al., 2015]).

Load balancing is the problem of distributing the workload evenly across multiple
available computational cores. This part is particularly challenging because a

lot of commonly used algorithms are inherently sequential and it is not easy to
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extract independent pieces of work that can be done in parallel.

For example, binary search is a widely used search algorithm that is inherently se-
quential and as such it is impossible to load balance it between multiple processors.
Figure [2.3] shows querying a sorted array of numbers for the position of the number
15. In binary search, at each time step, we take the middle element of the array and
we compare it to the number queried. Based on that we discard the half of the array
that we know does not contain our number and we repeat the process. Eventually we
narrow down the array to two elements and we manage to find our number with just
log,(n) comparisons and log,(n) time, which is much faster than a full scan of the
array, however because the input of each step depends on the output of the previous

step, parallelization is not possible.

|10]12]13]25]17]19]20]24[27[35]41]45][47]53]56][57]60]61]63]66]67[74]78]81]

[10[12]13][15]17[19] 2024273541 ]45]
[10]12]13]15]17]

25]17]

Figure 2.3: Execution of a binary search for key 15. Each row represents a time step and highlights the

element compared to the key. Finding key 15 requires four time steps and four comparisons.

On a parallel hardware however we have to change the algorithm to k-ary search
in order to take advantage of the architecture. In k-ary search, we essentially split the
array in k blocks where k is the number of parallel executing cores and we perform
k binary searches in parallel (Figure [2.4). While this solution performs more compar-
isons in total: (k— 1)log(n), they are executed in parallel by k— 1 devices, resulting in
overall runtime of just log (n). As k-ary search maps better to the parallel architecture,

it performs the search over the same array in just two timesteps, as opposed to four.

|10][12]13]15]17[19]20]24]27 |35 41]45]47]53]56[57]60]61]63]66]67]74]78]81]
25[17]

Figure 2.4: Execution of K-ary search with the same input as Figure for K = 8. The first time step

executes seven comparisons in parallel, and the query is recovered in two time steps.
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2.2.1 Memory

In this section, I give an overview of memory and why its efficient usage is the key to

fast computation.

2.2.1.1 Memory speed

Even in perfectly parallel setting, the programmer must be very careful of the memory
usage. Memory speed grows 50% slower than compute speed (Carvalho| [2002) and
it often bottlenecks execution time (Patterson et al., [1997). Table [2.1] and Figure [2.5]

show approximate time in which CPUs and GPUs need to wait to access a piece of

memory. Memory accesses are especially important in parallel and massively parallel
setting, because each core or GPU has memory associated with it and accessing remote
memory is much slower than accessing local memory (Figure [2.T). Main memory is
large and cheap to produce, but accessing it is slow. On the other hand registers and
CPU caches much faster, but small and expensive to manufacture (Figure[2.3). In order
to avoid expensive trips to main memory, programmers have to carefully design their
application so that it minimizes memory accesses and reuses memory where possible.
Often, optimizing parallel applications is a matter of reducing memory accesses and
where this is not possible, rearranging them in such a manner that one memory access

can be used by multiple cores at the same time.

CPU

Size: ~1KB

Registers Latency: ~1 cycle
Cost/Bit: Very high

Cache

Level 1
Size: ~32KB to 2MB
Latency: ~3 to 5 cycles

Level 2 Cost/Bit: High
Level 3
Main memory
Size: ~1GB
Physical RAM and Virtual Memory Latency: ~200 cycles

Cost/Bit: Low

Storage Devices

Size: ~1TB
ROM, Hard Drives and Removable Devices Latency: ~10,000,000 cycles
Cost/Bit: Very low

Figure 2.5: Memory hierarchy in the CPU world. Source: |Anda1am et a1.| (I20l3l)
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CPU GPU
Memory type Latency Memory type Latency

Register 0 Register 0

L1 cache 4 Shared 4-8
L2 cache 10 Global GPU  200-800
L3 cache 40 CPU 10K+
Remote L3" 80 Remote GPU 22K+
DRAM 330+

Remote DRAM 660+

Table 2.1: Latency (in clock cycles) for accessing different types of CPU and GPU memory. Estimates
are adapted from |Intel Corporation| (2009); NVIDIA Corporation| (2015) and also depend on several
aspects of hardware configuration. Time for accessing remote GPU devices or DRAM associated with
different CPUs is more than twice as slow as accessing local memory.

*Remote L3 refers to accessing cache line shared with a different core that is physically located on the

same chip.

2.2.1.2 DRAM bursts and coalesced memory accesses

In order for a programmer to take full advantage of the available memory bandwidth,
he/she needs to be mindful of the DRAM burst effect. It is observed that if an applica-
tion accesses a piece of memory, it is likely that it would also need to access adjacent
pieces in the very near future. Because of that main memory is designed to fetch sur-
rounding bytes, together with the requested bits. This effect is known as DRAM burst
and its size varies between architectures, but is usually between 32 and 256 bytes. This
is the reason why random memory accesses are much much slower than consecutive
ones: The consecutive ones can be made essentially for free, as long as they fit within
the DRAM burst, whereas random accesses can’t make use of all the available mem-
ory that has been fetched. In the GPU programming world, where it is usually the case
that one thread operates on one unit of data, random memory accesses are particularly
harmful, just because there are a lot more of them happening in parallel. In this case it
is very important make sure that consecutive threads operate on consecutive pieces of
memory, which makes the memory accesses coalesced. On the other hand if memory
accesses from consecutive threads are not consecutive, the memory access pattern is

called strided.
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2.2.1.3 Data sharing

Data sharing is also problematic: Sharing reads and writes between different threads
requires deterministic behaviour which can only be achieved with locking. Locking is
expensive because it both stalls some of the cores and involves an expensive context
switch to kernel space. For example, in a multi-threaded web crawler where all threads
read URLs from a the same queue, every time a thread reads a URL, it needs to be
removed from the queue. To ensure that each thread will get a different URL, the

queue must be locked before it is modified.

2.3 Machine Translation

Machine translation is the problem of performing an automatic translation from one
language to another, for example, the English sentence Quickly go to the green house!
into Spanish ;Vete rdpidamente a la casa verde! This is achieved by first training
machine learning models on large amount of parallel sentences and then using those

models to predict the translations of unseen data.

2.3.1 Statistical Machine Translation

In statistical machine translation, we model the problem as a process of first translat-

ing individual words or phrases, and then reordering these translations as shown on

example [2.6]

Quickly go to the green house!
——— =

iVete rapidamente a la casa verde!

Figure 2.6: English-to-Spanish translation with word-to-word correspondence.

Since there may be many possible translations of a word or phrase, we require a
probabilistic model to choose between them — a translation model. The translation
model P(f | ) provides the probability of a source language phrase f is the translation
of the target language phrase e. We combine it with a language model P(e) that gives
the likelihood of the sentence e occurring in the target language. Since a phrase table
does not contain all possible phrases, the decoder may reorder some words in order to
attempt to produce a more fluent translation (in practise the decoder may also reorder

whole phrases around if it deems it necessary to produce a more fluent output). In
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order to find the highest scoring translation é, we need to perform a search over all
possible reorderings E(f) (Equation 2.1).

é o< argmax,cp ) P(f | €) X P(e) (2.1)
—_— N =
Search ™ LM

2.3.1.1 Translation model: P(f | ¢)

The Translation Model is the P(f | ¢) part of equation It provides translations be-
tween words of phrases across languages. Languages rarely have one-to-one mappings
so we have to deal with a probability distribution over possible translations. For exam-
ple, the English word go could translate into Spanish as vaya, vete, va, ir or a myriad of
other present tense conjugations due to the more rich tense system in Spanish. The job
of the translation model is to provide us with the probability of each possible mapping
of the words or phrases across the languages in concern.

Working through my small example, let us imagine how a simplified phrase table

would look just for the verb "go" and the phrase "go to the":

English  Spanish Probability

go ir 30%
go va 30%
go vaya 10%
go ve 10%
g0 vete 10%
go va 10%
gotothe vayaala 30%
gotothe vayaal 30%
gotothe vasala 15%
gotothe  vasal 15%
gotothe vete al 5%
gotothe veteala 5%

Table 2.2: An extract from a Spanish-English phrase-table for the word "go" and the phrase "go to the".

In this case English is the source language f and Spanish is the target language e.

This is the phrase table ambiguity that occurs just for quarter of the words in the ex-

ample sentence. Phrase tables’ size could reach hundreds of gigabytes in size (Lopez,
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2007, 2008}, (Germannl, 2014} |Bogoychev and Hoang, 2016)) and its query speed is cru-
cial in order to achieve fast decoding speed. In Chapter 3, I show how my improved
phrase table design leads to order-of-magnitude increase in decoding speed in parallel

setting.

2.3.1.2 Language model: P(e)

The Language Model is the P(e) part of equation The translation model has pro-
vided the possible translations of the phrases, but there is no way of knowing which
ones would be the most appropriate. The language model is a statistical representa-
tion of a language which captures likely sequences. During translation we can use
the language model to choose the most likely permutations from the translation model
that constitute fluent speech in the target language. N-gram language models with a
smoothing strategy (Chen and Goodman, |1999) are most commonly used in statisti-
cal machine translation. Here N refers to the maximum context window size of the
language model.

If we don’t have the full sentence in the phrase table, we build our translation
out of smaller phrases that we have seen already in our training data. However as
languages do not have a monotonic or one-to-one mappings, a single source word
is often translated into multiple target words depending on the context. In order to
disambiguate, we require a language model to tell us how likely the sequence we have
produced is and to potentially reorder words in some phrases in order to achieve a more
natural translation. In my example, if my phrase table does not contain the phrase o
the green house <+ a la casa verde, we would have to use unigram translations. In this
case (and assuming all other parts of the sentence are built correctly) we would build

the following translation:

Quickly go to the green house!
—— o |

iVete rdpidamente a la verde casa!

This sentence is not grammatical, due to the words casa and verde appearing in the
wrong order and would be given a low score by the language model. Our translation
system would attempt to produce a better candidate sentence by trying out different
permutations of the target words to be scored by the language model as shown on
Figure [2.7]

This process would be repeated with every phrase used to construct the sentence,
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Quickly go to the green house!
e S |
iVete rédpidamente verde a la  casa!l
Quickly go to the green house!
e = |
iVete rédpidamente a verde la  casa!l
Quickly go to the green house!
e . =

jVete rdpidamente a la casa verde!

Figure 2.7: Example permutations of the Spanish translation of fo the green house.

thus thousands of similar permutations need to be produced. In practice there is a limit

on the distance any given word can move in order to reduce the search space.

On average, more than 700,000 language model queries are done per sentence de-
coded (Heafield, 2013) which takes up more than half of the wall clock time (Green
et al., 2014). In statistical machine translation, the language model is the most im-
portant component for achieving fluent target side sentences and thus researchers and
industry use the largest model they have (or the largest model their system can fit in
memory). Google are known to use an n-gram language model with 2 billion tokens
and more than 300 billion n-grams (Brants et al., 2007). In Chapter 4, I show how we

can use GPUs to accelerate n-gram language model queries.

2.3.1.3 Search: ¢ = argmaXx,cgf)

Searchis the & = argmax s part of equation@ For any given sentence all possible
permutations of the translation model outputs are scored using the language model
and the translation model. The sequence with the highest probability is the chosen
translation. The search space increases exponentially with sentence length, because of
the one-to-many translation mapping and the possible phrase permutations. Searching
exactly for the best translation involves producing hundreds of thousands translations
that are evaluated by the language model (Koehn, 2010). In order to make it tractable
various pruning methods are used (Tillmann and Ney, 2003}; Chiang, 2007), which
find an approximate solution. Unfortunately, while those approximation techniques
significantly reduce the computational cost, they are also inherently sequential and
hard to parallelise. Because this thesis does not focus on search, I do not go into

further detail here.
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2.3.2 Neural Machine translation

Neural machine translation does not employ any of the statistical methods from statisti-
cal machine translation. Instead it employs a neural network to directly model P(e | f)
by conditioning every single target word e; on all previously produced target words

e1,...,ei—1 and the full input sequence f:

If]
P(e | f) :HP(ei | e()a---aei—17f17"'7 |f|)

i=1

The most popular architecture, designed by Bahdanau et al.| (2014), is a bidirec-
tional long-short term memory (bi-LSTM) recurrent neural network (RNN) with an
encoder, decoder and attention mechanism. The details of these models are not crucial
to understanding this thesis, so I do not describe them in detail here. Neural network
parameter optimisation, or training, is performed using stochastic gradient descent,
most commonly using mini-batches, tiny subsets of the training data: The training
data is split into many mini-batches and then for each of them we compute a forward
pass through the network, to get the predictions and the error, and a backward pass in
order to get the gradient and update the parameters. As such, neural network training is
roughly three times more expensive per sentence compared to inference, therefore par-
allelising training across multiple GPUs is important in order to reduce training times.
Chapter 5 explains in details neural network training.

Neural machine translation training is very computationally expensive due to the
large number of model parameters — over 200 million that form up the weight ma-
triceﬂ as well as the large number of sentences that are passed through the network
during training — over 100 millionE] Training those systems takes weeks on multiple
GPUs (Wu et al., [2016), therefore training speed is a limiting factor for neural machine
translation: The large amount of time it takes to train the model to convergence limits
the amount of experiments that are able to be completed, the training data that is able
to be used and the size of the neural network.

Goyal et al. (2017) have shown that neural network training can be substantially
sped up by increasing the mini-batch size and using large amount of GPUs (256). They
train ImageNet, a large scale image classification task by Deng et al. (2009), in just one

hour, however the approach they take does not translate directly to the neural machine

Measurement taken from the Haddow et al.[(2018) models.
2The corpora are actually much smaller than that, but they are passed through the neural network mul-

tiple times
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translation setting, because of the different type of neural network (convolutional vs
recurrent) and the different type of data. In Chapter 5, I show how we can substantially
increase the speed of neural machine translation training, by applying some of the

methods by |Goyal et al.|(2017) and my own original work.

2.4 Conclusion

In this, chapter I have discussed the physical limitations that have ended single core
scaling and thus driven hardware manufacturers towards parallel and massively par-
allel devices. Multi-core and massively parallel devices work best with small data
structures in compute heavy workloads that require little to no synchronization, which
is at odds with the workloads typical for machine translation. Statistical machine trans-
lation works with large data structures that put a lot of strain on the memory and multi-
device neural machine translation training requires frequent synchronization points. In
the next three chapters, I show how we can extract better performance from modern
parallel and massively parallel hardware in both statistical and neural machine transla-

tion setting.



Chapter 3

Phrase table for for symmetric

multiprocessors

Phrase tables are the most basic component of a statistical machine translation decoder,
containing the parallel phrases necessary to perform phrase-based machine translation.
A phrase table is a dictionary that maps source phrases to target phrases. It is used in
statistical machine translation to produce a list of possible target phrase translations,
given a source phrase. Phrase tables typically reach hundreds of gigabytes in size, and
Lopez| (2008)) describes phrase tables that reach half of terabyte in size. A decade ago
it was prohibitively expensive for a phrase table of this size to reside in memory, even
if hardware supported it: a gigabyte of RAM cost about a 100 USD in 2006, compared
to 5 USD in 2018. Because of that for a long time machine translation was considered
a big data problem and the engineering efforts were focused on reducing the memory
footprint. Phrase tables were implemented using a number of different data structures

which all tackled the memory usage problem in a different manner:

e Zens and Ney| (2007) developed a prefix tree (commonly known as a trie; Fred-
kinl, [1960) based phrase table that drastically reduces the memory usage. The
phrase table was designed with the idea that the trie is to be an external data
structure residing on disk, as it is too big to be loaded in memory in its entirety

and subsections of it are only loaded on demand.

e (Callison-Burch et al. (2005)); |[Zhang and Vogel (2005); |[Lopez| (2007); Germann
(2015) developed suffix array based phrase tables, which work directly with the
parallel corpora, extracting target phrases on the fly, in order to enable easier

addition of new data and keep memory usage low. This is great in terms of flex-

33
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ibility and memory usage, but comes at the cost of speed, as the suffix arrays are
searched using binary search, which requires log>(7T) random memory accesses
where T is the number of tokens in the parallel corpora, which is detrimental to

performance.

Junczys-Dowmunt| (2012) developed another phrase table that focuses on com-
pression and small memory footprint. It uses phrasal rank encoding (Figure
[3.1), which can be viewed as a form of phrase level byte pair encoding (Gage,
1994). The method recursively encodes bigger strings as a composition of sev-
eral smaller ones until only small units remain. Source phrases that do not ex-
pand further point to a list of target phrases to which they correspond, ranked by
probability. Figure [3.1] shows shows the retrieval process for the source phrase

Maria no daba una bofetada a la bruja verde from the phrase table.

— Querying the initial source phrase returns two triplets of numbers, along-
side plain text green witch. This means that for reconstructing the target
phrase we need to query two subphrases, defined by those triplets, as well
as concatenate the resulting target phrases with green witch, which is stored

as plain text here because it only occurs once in the corpora.

— The span {0,4,0} encodes the following information: The difference of in-
dexes between the start the source phrase and the target subphrase, the
distance from the right subphrase to the end of the encoded phrase and the
rank of the target phrase among all target phrases that correspond to this
context. Using this information we identify the next subphrase that needs
to be queried, Maria no daba una bofetada and obtain a corresponding pair

of triplets.

— We follow the next triplet to first get Maria no and later two separate uni-

gram queries of Maria and no.

— Maria has only one translation so it has rank 0 and we obtain the corre-
sponding target phrase Maria, however no has multiple possible transla-
tions. This is why the triplet corresponding to no, {0,0,2} identifies that we

are interested in the translation ranked 2, did not.

— The procedure is repeated until all subphrases reconstructed. The cost of
querying this phrase table during decoding is potentially exponential in

terms of sentence length as phrase based decoding proceeds left-to-right
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green W|tch Maria did not slap | the | green witch

‘ Maria no daba una bofetada a la bruja verde H ‘ (0,4,0) ‘ (1,2,1)

A

ala }—» 1 the

e

slap

Maria no daba una bofetada ‘ (0,3,0) ‘ (-1,0,0) H Maria did not

slap
Maria no H 0 ’ (0,1,0) ‘ (0,0,2) H Maria | did not daba una bofetada %» 1| hit
T T
\ 0
- - | 1 no
Maria H 0 | Maria no
7] 2 | did not

Figure 3.1: Phrasal rank encoding. Figure taken from Junczys-Dowmunt| (2012

and will query all subphrases of a sentence. Extensive caching is used in

order to avoid repeated subphrase expansions.

In order to further reduce memory footprint, minimum perfect hashing (Nick Cer+
cone, 1983) is used to hash phrases to their expansions and on top of that bit-

aligned Huffman encoding is used to further compress the phrases.

The rest of the chapter is structured as follows: First, I describe the problems with
the current implementations. Then, I describe my own implementation that addresses
the aforementioned shortcomings and finally I evaluate the performance of my novel

phrase table against existing implementations.

3.1 Problems with current implementations

RAM prices have dropped 20 times over the past decade and high performance server
machines have hundreds of gigabytes of memory. For those machines it is no longer
needed to sacrifice query performance in favour of compression techniques such as the
ones described above. The implementation of Junczys-Dowmunt (2012), which was
the state of the art phrase table in terms of both speed and space usage in 2012 is slow

on modern parallel hardware because:
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Many random memory accesses Phrasal rank encoding, together with Huffman
encoding make the implementation of Junczys-Dowmunt (2012) extremely space effi-
cient, but at the cost of speed, because of the potentially exponential number of random
memory accesses necessary to reconstruct a single phrase as shown on Figure 3.1} As
discussed earlier, large number of random memory accesses make poor use of the

DRAM burst, which results in very poor memory bandwidth.

Caching is slow in multi-threaded setting To make queries faster, Junczys-Dowmunt
(2012) uses extensive caching. The cache is implemented as a dictionary of source
phrases and the corresponding target phrases. To conserve memory all threads used
during decoding share the same cache, so the cache needs to be locked when updated.
Therefore, when using more than 8 threads during decoding, performance goes down

due to the cost of locking.

3.2 ProbingPT

I have designed a new phrase table called ProbingPT based on linear probing hash
table (Peterson, 1957) for storage and lock-free querying, in order to deliver high per-
formance in modern use cases where memory is not limited. My goal in design was
to eliminate the necessity for cache by using data structures that minimize random
Mmemory accesses.

Linear probing hash table H is a data structure, based on an array A, that maps a
key k to a corresponding value v. A hash function % : k — N determines the memory
location where v is going to be stored inside the hash table. If several different k£ point
to the same memory location, there will a hash collision that needs to be resolved. In
order to identify whether a key collision has happened or if we are trying to insert a
duplicate entry, we store a fingerprint, the result of a different hash function 4’ : k — N
together with v. In a linear probing hash table, linear probing refers to the collision
resolution strategy of the hash table, where if k points to a memory location in A that is
already occupied by a different key, the next available memory location is used instead.
This is very efficient, because those memory locations would already be loaded from
main memory due to the DRAM burst effect.

When a linear probing hash table is queried we check if k exists at its corresponding
memory location. If the memory location is unoccupied, then we can conclude that £

and its corresponding v are not found in the table. If the memory location is occupied
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we verify that the k queried is the same as the one found at the memory location and
not a product of collision. If there is a mismatch, we proceed to linearly traverse the
phrase table until either we encounter a match of our k£ in which case we return the
corresponding v, or we reach an empty space or the end of the hash table. The latter
two cases mean that k and its corresponding v are not in the hash table.

I use an existing linear probing hash table implementation (Heafield, 2011). Linear
probing hash provides O(1) search time, has a very small overhead per entry stored
and is shown to be very fast in practice (Peterson, |1957).

The phrase table consists of three arrays: The first H contains a probing hash table
that maps hashes of source phrases to a memory location in the payloads array P, which
contains phrase probabilities, word alignments key, and optionally lexical reordering
score, a common feature used in statistical machine translation. The third array is
another hash table A that contains word alignments. Since there are about a 1000
unique word alignments for the hundreds of thousands of phrase pairs I store them in a
separate hash table and in the payloads array I store an extra key for each target phrase
that points to its corresponding alignment in the hash table. Hashes of the source

phrases are used as keys. The query algorithm goes as follows:

1. The translation of a source phrase is requested from the decoder.

2. The source phrase is hashed to produce a key k for which H is queried. If it
doesn’t exist, "NOT FOUND" is returned to the decoder. This is the first random

memory access that the phrase table makes.

3. If it does exist, the hash table returns the memory location within P. This mem-
ory location is where all target phrases, corresponding to this source phrase are

stored.

4. The first few bytes at the memory location that was previously identified contain
information about the number of target phrases and the number of bytes they
occupy. This is the second random memory read. Since everything is laid out
consecutively in A, this DRAM burst also loads the memory for the target phrases

that are about to be extracted.

5. Then, for each target phrase, the phrase table extracts the scores, the alignments
and the tokens and returns them in separate arrays so they are easily used by the
decoder. All of those elements with the exception of the alignment scores are

laid out consecutively in the payloads array. The alignment scores are extracted
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from A. For each target phrase there is potentially one additional memory access

to A for the alignment scores.

My new phrase table phrase table address the shortcomings of previous implemen-

tations:

Few random memory accesses | have reduced the number of random memory
accesses from potentially exponential in terms of phrase length, to just two: One for
the large probing hash table and one for the payloads array. My phrase table also
also has one additional memory access per target phrase, because it needs to fetch the
alignment information from a separate hash table. That hash table, however, is small
enough (20-30 KB) to fit in the L1 or L2 cache of any modern processor, which makes
accessing it quite cheap: If the memory location accessed is already in cache, the cost
of random memory access is not at all high: just 4-10 CPU cycles, compared to 300+
for DRAM.

Caching is now redundant The phrase retrieval procedure of my phrase table is
simple and doesn’t involve large number of memory accesses, which makes caches
unnecessary. This makes the phrase table multi-threading friendly, because there is no

need for locking or synchronization of different threads.

3.2.1 Integrated lexical reordering

Lexical reordering scores, associated with every single source-target phrase pair, are
frequently used in Moses (Koehn et al., 2007) as a feature function, but they are stored
separately from the phrase table inside a reordering table. Since those scores are asso-
ciated with every single phrase pair, it is possible to attach those scores to the phrase
table’s entries. Doing so reduces both memory usage and memory accesses: We no
longer require a separate hash table for the source/target phrases that the lexical re-
ordering scores are associated with, as I reuse the key from my phrase table. Extracting
lexical reordering scores no longer incurs the penalty of additional memory accesses,
as querying is tied to the phrase table query and all related scores would be fetched
with the same DRAM burst, because they are stored consecutively. To my knowledge,
this is the first phrase table implementation that incorporates lexical reordering table.

The phrase table is part of upstream Mose{] but it can also be used standaloneE]

Thttps://github.com/moses-smt/mosesdecoder
Zhttps://github.com/XapaJlaMnu/ProbingPT
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3.3 Experimental setup

For the performance evaluation I used French-English model trained on 2 million EU-
ROPARL sentences. I used a KenLM (Heafield, 201 1) language model and cube prun-
ing algorithm (Chiang, [2007) with a pop-limit of 400. I time the end-to-end translation
of 200,000 sentences from the training set. All experiments were performed on a ma-
chine with two Xeon E5-2680 processors clocked at 2.7 Ghz with total of 16 cores and
16 hyperthreads and 290 GB of RAM.

Hyperthreads are Intel’s way of implementing simultaneous multi-threading, a tech-
nique that improves the efficiency of modern superscalar processors. Superscalar pro-
cessors can execute more than one instruction in parallel, provided such instructions
are scheduled. Hyperthreads expose additional CPU cores to the OS, which are in-
distinguishable from actual CPU cores. A 16 core, 16 hyperthread processor would
appear to the OS as a 32 core processor. This allows for the OS scheduler and appli-
cations to schedule more instructions to the processor which ensures that there would
be enough instructions available to take advantage of the superscalar architecture. It is
important to note that hyperthreads do not always increase performance. In scenarios
where there is high level of lock contention, the introduction of additional threads in

the workload will make the performance go down.

In all of my figures “32 cores” means 16 cores and 16 hyperthreads.

3.3.1 Decoders

I use two different decoders for my experiments: The widely used Moses machine
translation decoder and Moses2, a redesign of Moses focusing on speed (Hoang et al.,
2016). I benchmark using Moses to show the speedup my implementation offers as
a drop-in replacement to existing phrase tables in the widely used decoder. Unfor-
tunately, Moses has major multi-threading problems, due to its extensive usage of
std::locale, which invokes a global lock. As such, Moses is a poor framework for mea-
suring the multi-threading performance of my phrase table, as the underlying multi-
threading already cause high lock contention at high thread count. I used the highly
optimized Moses2 to show the speed my phrase table can achieve when it is running on
a decoder optimized for multi-threading. Furthermore the Moses API made it difficult

to include integrated lexical reordering and it is only a feature in Moses2.
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3.3.2 PhraseTables

In my experiments I compare ProbingPT against CompactPT (Junczys-Dowmunt, 2012).
There are currently two other phrase tables: PhraseDictionaryOnDisk, a multi-threading
enabled implementation of the Zens and Ney| (2007) phrase table and PhraseDic-
tionaryMemory, an in-memory phrase implementation of the work of Zens and Ney
(2007) using STL data structures. Junczys-Dowmunt (2012) has shown that Com-
pactPT is faster than both implementations of the Zens and Ney| (2007) in all settings.
Based on this I focus on comparing ProbingPT against CompactPT.

ProbingPT and CompactPT produced nearly identical translations under the same
decoder. In my tests 3 out of 200,000 sentences slightly differ in their translation. This
is expected according to Junczys-Dowmunt| (2012) because CompactPT may recon-
struct a phrase erroneously in a few edge casesE] Since my phrase table produces the
same translations as both implementations of Zens and Ney| (2007), I conclude my

implementation is correct and can be used as drop-in replacement for CompactPT.

3.4 Resulis

Phrase table Size

ProbingPT 5.8GB
ProbingPT + Reordering (RO) 8.2 GB
CompactPT 1.3GB
CompactPT RO 0.6 GB

Table 3.1: Phrase table sizes

CompactPT which is designed to minimize model size has naturally lower model
size compared to ProbingPT. However the extra RAM used is only 2% of the 290 GBs
available on my test system which is insignificant.

Figure [3.2] shows performance comparison of two systems with CompactPT based
reordering tables that differ in the phrase table used. The best performing ProbingPT
system here delivers about 30% better performance compared to the corresponding

CompactPT system. We see that the CompactPT system doesn’t improve its perfor-

3Personal correspondence
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Figure 3.2: A comparison of CompactPT and ProbingPT’s time to translate the dataset with different
core counts. The ProbingPT systems are better than the CompactPT systems, which stop scaling at 8
threads. ProbingPT scales up to 16 threads when a CompactPT based reordering table is also used, but

when it is removed, the ProbingPT system continues scaling.

mance when using more than 8 threads, but the ProbingPT one continues to scale

further until it starts using hyperthreads.

I hypothesized that the performance of the ProbingPT system on Figure[3.2]is ham-
pered by the inclusion of CompactPT based reordering. Moses doesn’t support Prob-
ingPT based reordering and in order to measure the head-to-head performance of the
two phrase tables, I also included in the figure the same test using two systems that
do not use reordering tables. We can see that ProbingPT model without reordering ta-
ble consistently outperforms the corresponding CompactPT by 10-20% at lower thread
count but the difference grows as much as 5 times in favour of ProbingPT at the maxi-
mum available thread count on the system. Comparing the best performance achieved
from both system, ProbingPT is capable of delivering twice the performance of Com-

pactPT. It is important to note that ProbingPT’s performance always increases with the
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Moses with and without reordering tables, system time
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Figure 3.3: System time comparison of the systems on Figure System time is larger in terms of

absolute value compared to real time, because it is summed across all threads.

increase of the thread count, whereas CompactPT’s performance doesn’t improve past
8 threads. We can also see that the ProbingPT based system can even take advantage
of hyperthreads, which is not possible with any system that uses CompactPT based
table (Figure [3.2). Removing the reordering table from the CompactPT system has a
much smaller effect than removing it from the ProbingPT system. This shows that the
lexical reordering table only slows down the decoder because it is implemented in a
inefficient manner. I can conclude that Moses can achieve faster translation times on

highly parallel systems by using ProbingPT.

3.4.1 Why is CompactPT slower?

In the single-threaded case it is likely that CompactPT’s many random memory ac-
cesses cause it to be slower than ProbingPT, because consecutive memory accesses

are much faster due to the DRAM burst effect. When the thread count grows, the
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performance gap between CompactPT and ProbingPT widens, because of the locking
that goes on in the former’s cache. This can be seen from Figure [3.3] which shows
the system time used in the experiment on Figure [3.2] System time shows how much
time a process has spent inside kernel routines, which includes locking and memory
allocations and 10 operations. We want to avoid spending time in kernel routines as
much as possible, because context switching to kernel space is expensive and runtime
spent in there is wasteful in terms of computational resources. The system time used in
the CompactPT systems grows linearly until 8 threads and then the growth rate starts
increasing at a faster rate widening the gap with ProbingPT. This is also the reason
why CompactPT’s performance severely degrades when using hyperthreads: the extra
threads just spend more time waiting on locks, rather than doing useful work. The
ProbingPT system without reordering table on the other hand increases its usage of
system time at a linear rate even when using hyperthreads. In the worst case, when
using 32 threads, ProbingPT spends 16% of its runtime in kernel routines, whereas
CompactPT spends 84% of its runtime there at the same thread count. I can conclude
that design of ProbingPT, which focuses on memory throughput rather than compact-
ness, scales very well with the increase of number of threads and is suitable for use in

modern translation systems running on contemporary hardware.

3.4.2 Order of magnitude performance improvements with integrated

reordering table

As integrated lexical reordering is only available in Moses2 I conducted an experi-
ment where I compare systems using CompactPT based reordering and ProbingPT
integrated reordering (Figure[3.4)). The ProbingPT based system is able to translate all
sentences in my test set in only 4 minutes, whereas the the system using CompactPT
reordering system took 39 minutes. I also observed limited scaling when using Com-
pactPT based reordering: the best performance was achieved at 8 threads. I observe
that using lexical reordering table has negligible impact on performance if it is used
within ProbingPT. I am not entirely certain which factor contributed more to the in-
creased performance: having a reordering table based on the faster ProbingPT or the
reduced IO and computational resources that the integrated reordering table requires.
As currently there is no standalone ProbingPT based reordering table I can not say for
sure. Nevertheless I achieve 10x speedup by using my novel reordering table within
Moses2 (Figure [3.5).
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Moses2 with ProbingPT with reordering tables
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Figure 3.4: Moses2 comparison between ProbingPT integrated reordering and CompactPT based re-
ordering. Both systems use ProbingPT as a phrase table.

3.5 Evaluation

3.5.1

Profiling the code

I was very surprised of the speedup my phrase table offered, particularly in Moses2,

because in phrase-based decoding, the number of phrase table queries increases lin-

early with the length of the sentence. They constitute a tiny fraction of the number of

language model queries, which are about 1 million per sentence (Heafield, 2013). To

get a clearer understanding of this, I used Google’s proﬁlerﬂ I profiled the pair of sys-
tems, displayed on Figure In the system which has ProbingPT based reordering,

the language model is responsible for about 40% of the decoding runtime, compared

with only 1% in the Moses2 system with CompactPT based reordering. In the latter

system the runtime is dominated by CompactPT search and std::locale locking due to

“https://github.com/gperftools/gperftools
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Figure 3.5: Comparison between Moses and Moses2 with ProbingPT in terms of words-per-second

decoding performance. Image source: [Hoang et al.| (2016)

the phrase table using string operations during its search.

In Moses the difference between using ProbingPT and CompactPT is not so ap-
parent, before we go to higher thread count, because the decoder itself is very slow
and hides the phrase table inefficiencies. It is clear that even though the phrase table
queries are a small part of the full decoding process, they are enough to slow it down
10 times if no other bottlenecks exist. Using ProbingPT for both the phrase table and

the reordering model makes for a compelling combination.

3.6 Conclusion

I conducted a case study of phrase table performance in a statistical machine translation
decoder and identified performance shortcomings in existing phrase table implemen-
tations: Modern hardware has abundance of memory, but memory speed is still much
lower than the CPU’s computational power. Therefore in order to take full advantage
of the modern parallel hardware we need to minimize memory accesses and remove
synchronization points. Having those in mind I designed a new lock free phrase table,
that maximizes memory bandwidth and achieved 10x performance improvement over

existing implementations. My phrase table is the central piece of the Moses2 decoder
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and is available as a standalone software that can be used by other researchers.



Chapter 4

N-gram language models for

massively parallel devices

N-gram language models are ubiquitous in speech and language processing applica-
tions such as machine translation, speech recognition, optical character recognition,
and predictive text. Because they operate over large vocabularies, they are often a
computational bottleneck. For example, in machine translation, Heafield (2013) esti-
mates that decoding a single sentence requires a million language model queries, and
Green et al. (2014) estimate that this accounts for more than 50% of decoding CPU
time.

In order to achieve faster decoding time, I attempt to speed up the slowest com-
ponent by turning to massively parallel hardware architectures, exemplified by general
purpose graphics processing units (GPUs), whose memory bandwidth and computa-
tional throughput has rapidly outpaced that of CPUs over the last decade (Figure [4.T)).
Exploiting this increased power is a tantalizing prospect for many combinatorial prob-
lems in statistical NLP, such as parsing (Canny et al., |2013; |Hall et al., 2014)), speech
recognition (Chong et al., 2009, 2008), and phrase extraction for machine translation
(He et al., 2015). As these efforts have shown, it is not trivial to exploit this com-
putational power, because the GPU computational model rewards data parallelism,
minimal branching, and minimal access to global memory, patterns ignored by many
classic NLP algorithms (Section [.T)).

This chapter presents the first language model data structure designed for this com-
putational model. My data structure is a trie in which individual nodes are represented
by B-trees, which are searched in parallel (Section {.2)) and arranged compactly in

memory in order to fit on the GPU (Section .4). My experiments across a range of

47
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Figure 4.1: Theoretical floating point performance of CPU and GPU hardware over time (NVIDIA
Corporation, 2015)).

parameters in a batch query setting show that this design achieves a throughput six
times higher than KenLM (Heafield, 2011), a highly efficient CPU implementation
(Section [4.5). They also show the effects of device saturation and of data structure

design decisions.

4.1 GPU computational model

This section builds on Chapter 2 and delivers an in depth description of the GPU ar-
chitecture (Figure [4.2). It is essential to have an in depth understanding of the GPU
architecture in order to design efficient software for it.

GPUs and other parallel hardware devices have a different computational profile
from general purpose CPU architectures such as x86, ARM or PowerPC. As discussed
in Chapter 2, data structures designed for serial models of computation are not appro-

priate for massively parallel hardware.

4.1.1 GPU design

Physically, a GPU consists of many simple computational cores, which have neither
complex caches nor branch predictors to hide latencies. This makes them inherently
slower than CPUs, but because they have far fewer circuits than CPU cores, GPU cores
are much smaller, and many more of them can fit on a device. So the higher through-
put of a GPU is due to the sheer number of cores, each executing a single thread of

computation (Figure 4.2)). Each core belongs to a Streaming Multiprocessor (SM),
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Figure 4.2: GPU memory hierarchy and computational model (NVIDIA Corporation, 2015).

and all cores belonging to a SM must execute the same instruction at each time step,
with exceptions for branching described below. This execution model is very similar

to single instruction, multiple data (SIMD) parallelismE]

Computation on a GPU is performed by an inherently parallel function or kernel,
which defines a grid of data elements to which it will be applied, each processed by a
block of parallel threads. Once scheduled, the kernel executes in parallel on all cores
allocated to blocks in the grid. At minimum, it is allocated to a single warp—32 cores
on my the GPU I use for experiments. If fewer cores are requested, a full warp is
still allocated, and the unused cores idle. Hence in order to achieve to full theoretical

performance of the GPU, it’s important to use all the cores.

As we have seen with other hardware, the GPU offers several memory types, which
differ in size and latency (Table {.T)). Just like a CPU program, being careless with
memory accesses patterns will be detrimental performance. Unlike a CPU program,
which can treat memory abstractly, a GPU program must explicitly specify in which
physical memory each data element resides. This choice has important implications for
efficiency that entail design tradeoffs, since, as we have already seen, memory closer

to a core is small and fast, while memory further away is large and slow (Table §.1]).

'Due to differences in register usage and exceptions for branching, this model is not pure SIMD. Nvidia

calls it SIMT (single instruction, multiple threads).
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Memory type Latency Size
Register 0 4B
Shared 4-8 16KB-96KB
Global GPU  200-800 2GB-12GB
CPU 10K+ 16GB-1TB

Table 4.1: Latency (in clock cycles) and size of different GPU memory types. Estimates are adapted
from NVIDIA Corporation| (2015) and depend on several aspects of hardware configuration.

Data structure Size Query Ease of Construction Lossless
speed  backoff time

Trie (Fredkin, [1960) Small Medium No Fast Yes

Reverse Trie (Heafield, 2011) Small Fast Yes Fast Yes

Probing hash table (Heafield, 2011) Larger  Faster Yes Fast Yes

Double array (Yasuhara et al., 2013) Larger Fastest Yes Very slow Yes

Bloom filter (Talbot and Osborne,[2007) ~ Small Slow No Fast No

Table 4.2: A survey of language model data structures and their computational properties.

4.1.2 Designing efficient GPU algorithms

To design an efficient GPU application we must observe the constraints imposed by

the hardware, which dictate several important design principles.

Minimize global memory accesses. Data in the CPU memory must first be trans-
ferred to the device. This is very slow, so data structures must reside in GPU memory.
But even when they reside in global GPU memory, latency is high, so wherever pos-
sible, data should be accessed from shared or register memory. This is similar to the
situation in the CPU world discussed in Chapter 2: Accessing memory in DRAM is
much slower than accessing memory from caches, so I want to minimize it.

Access memory with coalesced reads. In chapter 2, I described the DRAM burst
effect, which makes accessing consecutive memory locations much cheaper compared
to random memory locations. The same effect also appears in the GPU world: When a
thread requests a byte from global memory, it is copied to shared memory along with
many surrounding bytes (between 32 and 128 depending on the architecture). So, if
consecutive threads request consecutive data elements, the data is copied in a single

operation (a coalesced read), and the delay due to latency is incurred only once for all
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threads, increasing throughput.

Avoid branching instructions. If a branching instruction occurs, threads that meet
the branch condition run while the remainder idle (a warp divergence). When the
branch completes, threads that don’t meet the condition run while the first group idles.
So, to maximize performance, code must be designed with little or no branching. This
is a problem unique to programming vector processors such as the GPU.

Use small data structures. Another problem unique to the GPU programming is
that the available memory is much lower than what we are used to in the CPU world:
The maximum amount of memory of a state-of-the-art GPU is 24GBLanguage mod-
els that run on CPU frequently exceed these sizes, so my data structures must have the

smallest possible memory footprint.

4.2 A massively parallel language model

Let w be a sentence, wj its ith word, and N the order of our model. An N-gram language
model defines the probability of w as:

[wl

P(W) = HP(WZ' | wi_l...wi_N+1) (41)
i=1

A backoff language model (Chen and Goodman, |1999) is defined in terms of n-gram
probabilities P(w; | wi—1...w;_p1) for all n from 1 to N, which are in turn defined by
n-gram parameters P(w;...w;_,1) and backoff parameters B(w;_1...w;_,1). Usually
P(wj..wi_ny1) and B(w;_1...w;_,1) are probabilities conditioned on w;_1...w; i1,
but to simplify the following exposition, I will simply treat them as numeric parame-

ters, each indexed by a reversed n-gram. If parameter P(wi...wi_nH) 1s nonzero, then:
P(Wi | Wizt Wi—py1) = P(wi...wi_nH)
Otherwise:
P(wi | Wim1..Wips1) = P(wi | wim1..Wi—pi2) X B(Wi—1...Wi—pnt1)

This recursive definition means that the probability P(w; | wi_j...w;_n+1) required for

Equation 4.1 may depend on multiple parameters. If r (< N) is the largest value for

%In practice GPUs with more memory do exist, but they are prohibitively expensive and available only

as limited edition devices.
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which P(w; | wi_1...wi_r41) is nonzero, then we have:

N

P(W,‘ ‘ Wl',l...wi,NJrl) = p(wi...wi,ﬂrl) H B(Wifl---wifnqtl) (4.2)
n=r+1

My data structure must be able to efficiently access these parameters.

4.2.1 Language model data structures

With this computation in mind, I surveyed several popular data structures that have
been used to implement N-gram language models on CPU, considering their suitability
for adaptation to GPU (Table #.2)):

Trie (Fredkin, 1960) is the most widely used data structure for a language model. In-
stead of string full phrases, it stores common prefixes together to save space.
They are used in SRILM and IRSTLM. Trie-based data structures are the small-

est non-lossy container for n-gram language models.

the houseisred  0.333 7 red 0.333

the house is green 0.333 the - house -->is £--->green 0.333

~
~.

the house is blue 0.333 " piue 0.333

Figure 4.3: Store common substrings together, collapsing “the house is” together.

Reverse trie is an optimization over tries where all phrases are store backwards. This
helps during query time because it enables backoff probability to be extracted
without additional queries. This data structure is used in KenLM and IRSTLM.
The reason why it is faster has to do with the backoff calculation, which is ex-

plained in detail in section 4.3.

Probing Hash table is another backend used in KenLM. It is based on a the same
probing hash table, as the one I used in Chapter 3: The whole phrase is hashed
so only one query to the data structure per n-gram is necessary to extract a given
score and in case there is a need to backoff, previous n-gram queries’ results are
cached in order to avoid unnecessary searches. This contrasts with the pointer
chasing that needs to be done in a reverse trie. This approach is nearly twice as
fast as the reverse trie (Heafield, 2011)), but consumes more memory, an undesir-

able quality for the limited memory availability on the GPU.
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Figure 4.4: A fragment of language model, implemented using a hash table, a trie and a reverse trie,

showing the query of N-gram is one of in bold. If we query for the N-gram every one of, which is

not in my example, we would need to fetch the longest match P(of | one) and the backoff parameter

B(every one) (not shown on the table).In the hash table case we would start to query the hash array A

incrementally from unigrams and rely on cache to find the longest match in case of missing n-gram.In

the trie case, we would need to recursively have to go back to the root, querying first, every one of,

then one of and if this is not found, of. In addition to that we would need to also fetch B resulting in

even more jumps back to the root node. In the reverse trie case we start traversing from the back of the

phrase, so in case of a missing n-gram, we would immediately find what is the longest match and we

only need to go back to the root once to fetch B. Based on image from [Federico et al.| (2008).
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A contrasting comparison of trie, reverse trie and a hash table is shown on Figure

44

4.2.1.1 Alternative data structures

Iintroduced the most common data structures that are used in the design of the majority
of language model implementations, but I also give a brief survey over another two data
structures that deliver the smallest possible model size and the fastest possible query
time on the CPU:

Bloom filters RandLLM (Talbot and Osbornel, 2007) uses randomized bloom filters to
store n-grams. Bloom filters are a variation on hash tables which do not resolve
collisions. Because of the nature of the data structure used, the model is very
compact, but lossy. Furthermore as bloom filters require the input to be hashed
with multiple hash functions, more computations need to be performed during
retrieval compared to other data structures and thus the performance is lower
(Heafield, 2011). On the GPU, the additional computational cost is not of con-
cern as we have vast reserves of computational power, but each hash function

denotes an additional random memory access which would make querying slow.

Double arrays DALM (Yasuhara et al., 2013) is a language model based on double
arrays (Aoe et al., 1992). Double arrays are an efficient representation of tries,
where each n-gram is retrieved after exactly n random memory accesses where
n is the order of the n-gram. The data structure is very fast, delivering 5%-10%
more queries per second and a smaller model size than KenlLM’s probing back-
end. The problem with the double array implementation lies in its construction
cost: O(MN?) where M is the number of trie nodes of a trie representation and
N is the number of unique words, which makes it impractical for real world ap-
plications. Using the computational power of the GPU to speed up construction
is one way to alleviate this issue, but I decided against pursing this line of work,
as the data structure is still larger than a trie and conserving memory is a high

priority.

Since a small memory footprint is crucial, I implemented a variant of the reverse
trie data structure of Heafield (2011). I hypothesized that its slower query speed com-
pared to a probing hash table would be compensated for by the throughput of the GPU,

a question I return to in Section[4.5]
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4.3 Data structures used in my implementation

In this section I introduce in detail the data structures I have chosen to implement the

first GPU n-gram language model.

4.3.1 Reverse trie

A reverse trie language model exploits two important guarantees of backoff estimators:
first, if P(w;...w;_n;1) is nonzero, then P(w;...w;_,,+1) is also nonzero, for all m < n;
second, if B(w;_1...wj_n1) is one, then B(w;_i...w;—p41) is one, for all p > n. Zero-
valued n-gram parameters and one-valued backoff parameters are not explicitly stored.
To compute P(w;|w;_1...w;_n1), We iteratively retrieve P(w;...w;_ ;1) for increas-
ing values of m until we fail to find a match, with the final nonzero value becoming
P(wj...w;_,,1) in Equation We then iteratively retrieve B(w;_1...w;_,+1) for in-
creasing values of n starting from r 4+ 1 and continuing until » = N or we fail to find a
match, multiplying all retrieved terms to compute P(w;|w;_1...w;—n+1) (Equation .
The reverse trie is designed to execute these iterative parameter retrievals efficiently.

Let X be a our vocabulary, X" the set of all n-grams over the vocabulary, and (Ul
the set 2! U...UXN. Given an n-gram key w;..w;_,4+1 € Z[N}, our goal is to retrieve
value (P(w;..w;_ni1),B(Wi..wi_ns1)). We assume a bijection from X to integers in
the range 1,...,|X|, so in practice all keys are sequences of integers.

When n = 1, the set of all possible keys is just X. For this case, we can store keys
with nontrivial values in a sorted array A and their associated values in an array V of
equal length so that V[j] is the value associated with key A[j]. To retrieve the value
associated with key k, we seek j for which A[j] = k and return V[ j]. Since A is sorted,
J can be found efficiently with binary or interpolated search (Figure d.5).

When n > 1, queries are recursive. For n < N, for every wj...w;_,+1 for which

P(Wi..wi_ns1) > 0o0r B(w;...w;_ny1) < 1, our data structure contains associated arrays
Kyi.wi ey and Vi, . When key k is located in Ay, v, ., [/], the value stored at
Vivi..wins1 LJ] includes the address of arrays A, ,, .« and V;,. .. «. To find the

values associated with an n-gram w;...w;_,11, we first search the root array A for j;
such that A[j;] = w;. We retrieve the address of A,,, from V], and we then search
for jo such that A,,,[j2] = wi—;. We continue to iterate this process until we find the
value associated with the longest suffix of our n-gram stored in the trie. We therefore
iteratively retrieve the parameters needed to compute Equation 4.2} returning to the

root exactly once if backoff parameters are required. For contrast in the extreme case,
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a forward trie will return to the root node at most n times where 7 is the context window

of the n-gram language model.

4.3.2 K-ary search

On a GPU, the trie search algorithm described above is not efficient because it makes
extensive use of binary search, which is an inherently serial algorithm, as shown in
Chapter 2. However, there is a natural extension of binary search that is well-suited to
GPU: K-ary search (Hwu, 2011), described in detail in Chapter 2. Rather than divide
an array in two as in binary search, K-ary search divides it into K equal parts and

performs K — 1 comparisons simultaneously (Figure 4.6)).

|10[12]13[15]17]19]20]24[27[35]41]45|47]53]56[57[606163]66]67[74][78]81]|

[10[12]13]15]17[19] 2024273541 ]45]|

[10]12]13]15]17]

25]17]

Figure 4.5: Execution of a binary search for key 15. Each row represents a time step and highlights the

element compared to the key. Finding key 15 requires four time steps and four comparisons.

|10[12[13]15]17]19]20[24[27 3541 45]47[53[56 |57 |60 |61]63[66]67|74]|78]81]
25]17]

Figure 4.6: Execution of K-ary search with the same input as Figure for K = 8. The first time step

executes seven comparisons in parallel, and the query is recovered in two time steps.

To accommodate large language models, the complete trie must reside in global
memory, and in this setting, K-ary search on an array is inefficient, since the parallel
threads will access K non-consecutive memory locations, meaning K separate memory
reads. To avoid this, I require a data structure that places the K elements compared by
K-ary search in consecutive memory locations so that they can be copied from global
to shared memory with a single, coalesced read. This data structure is a B-tree (Bayer
and McCreight, |1970), which is widely used in databases, filesystems and information

retrieval.
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4.3.3 B-tree

Informally, a B-tree generalizes binary trees in exactly the same way that K-ary search
generalizes binary search (Figure 4.7). More formally, a B-tree is a recursive data
structure that replaces arrays A and V at each node of the trie. A B-tree node of size K

consists of three arrays:
1. A 1-indexed array B of K — 1 keys.

2. A l-indexed array V of K — 1 associated values so that V[j] is the value associ-

ated with key BJ[J].
3. In case the node is not a leaf, a 0-indexed array C of K addresses to child B-trees.

The keys in B are sorted, and the subtree at address pointed to by child C[j] represents
only key-value pairs for keys between B[] and B[j+ 1] when 1 < j < K, keys less than
B[1] when j = 0, or keys greater than B[K| when j = K.

To find a key k in a B-tree, we start at the root node, and we seek j such that
Bj] <k < B[j+1]. If B[j] = k we return V[ ], otherwise if the node is not a leaf node
we return the result of recursively querying the B-tree node at the address C[j] (C[0]
if k < B[1] or C[K] if k > B[K]). If the key is not found in array B of a leaf, the query
fails. Figure 4.7|shows the querying for the key 15:

1. We read in the root of the B-tree into shared memory, taking advantage of the

DRAM burst effect to maximize memory throughput and perform K-ary search.

2. K-ary search is then performed on the root node, using K GPU threads in paral-
lel. We identify that the key we are looking for is between 13 and 19 and mark

that child node for exploration.

3. We read in the child node in shared memory and perform K-ary search again.
This time we have identified that the key is located within this node and return
the probability and backoff associated with it. In case this trie does not represent
a final n-gram level, we also extract the address of the root node of the next Trie

level.

My complete data structure is a trie in which each node except the root is a B-tree
(Figure [4.8). Since the root contains all possible keys, its keys are simply represented

by an array A, which can be indexed in constant time without any search.



58 Chapter 4. N-gram language models for massively parallel devices

struct Entry {
unsigned int key; Vo 10
unsigned int next_level; ffset t
float prob; 1
float backoff;
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Figure 4.7: In a B-tree, the elements compared in K-ary search are consecutive in memory. I also show
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Figure 4.8: Illustration of the complete data structure, showing a root trie node as an array representing
unigrams, and nine B-trees, each representing a single trie node. Physically, the entire data structure is
laid out in a single consecutive array in memory. The trie nodes are numbered according to the order in

which they are laid out.

4.4 Memory layout and implementation

Each trie node represents a unique n-gram w;...w;_,.1, and if a B-tree node within the
trie node contains key w;_,, then it must also contain the associated values P (Wi..Wi_pn),
B(wj...w;i_y), and the address of the trie node representing w;...w;_, (Figure . The
entire language model is laid out in memory as a single byte array in which trie nodes
are visited in breadth-first order and the B-tree representation of each node is also vis-
ited in breadth-first order (Figure {.8). An example n-gram query ABC on the trie
shown on Figure 4.8}

1. We identify the memory location of A directly in the unigram array. We can
do that because the unigram array contains all vocabulary items and we use the
vocabulary ID (an unsigned int) as an offset to encode the memory location. We
read in that memory location and there we can find the address of the next trie

level that contains all continuations of n-grams starting with A.

2. We load the root node of the bigram B-tree and perform K-ary search in order to

find the location of B.

3. Once we identify the location of B we extract the address for the trigram trie
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corresponding to all n-grams starting with AB.

4. Once again we load up the root node of the trigram trie in memory and perform
K-ary search in order to find the location of C and then extract and return the
probability of ABC.

Since modern GPUs have a 64-bit architecture, pointers can address 18.1 exabytes
of memory, far more than available. To save space, my data structure does not store
global addresses; it instead stores the difference in addresses between the parent node
and each child. Since the array is aligned to four bytes, these relative addresses are di-
vided by four in the representation, and multiplied by four at runtime to obtain the true
offset. This enables encoding relative addresses of 16GB, which is the upper mem-
ory limit of the vast majority of devices. I estimate that relative addresses of this size
would allow for storing a model containing around one billion n-grams Unlike CPU
language model implementations such as those of Heafield| (2011) and Watanabe et al.
(2009), I do not employ further compression techniques such as variable-byte encod-
ing or LOUDS (Kudo et al., 2011), because their runtime decompression algorithms
require branching code, which my implementation must avoid.

I optimize the node representation for coalesced reads by storing the keys of each
B-tree consecutively in memory, followed by the corresponding values, also stored
consecutively (Figure[d.7). When the data structure is traversed, only key arrays are it-
eratively copied to shared memory until a value array is needed. This design minimizes

the number of reads from global memory.

[23] [43] [73]

[ L2l Tus[ ] []6] |41\| (s | [ [ [e] ] [[s¢] [] |
o
First child e
offset &e® Payloads

| [ 60 j [40|60|40[40] [3]3]73] | 660 |0A23|05| | 1320 |0A7[05| | 1980 |0A13|05| |

Figure 4.9: Layout of a single B-tree node for K = 4. Relative addresses of the four child B-tree nodes
(array C) are followed by three keys (array B), and three values (array V), each consisting of an n-gram

probability, backoff, and address of the child trie node.

3] estimate this by observing that a model containing 423M n-grams takes 3.8Gb of memory, and as-
suming an approximately linear scaling, though there is some variance depending on the distribution

of the n-grams.
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4.4.1 Constructing minimum depth B-trees

The canonical B-tree construction algorithm (Cormen et al., |2009) produces nodes that
are not fully saturated, which is desirable for B-trees that support insertion. However,
my B-trees are immutable, and unsaturated nodes of unpredictable size lead to under-
utilization of threads, warp divergence, and deeper trees that require more iterations
to query. So, I use a construction algorithm inspired by |Cesarini and Sodal (1983) and
Rosenberg and Snyder| (1981). It is implemented on CPU, and the resulting array is
copied to GPU memory to perform queries.

Since the entire set of keys and values is known in advance for each n-gram, my
construction algorithm receives them in sorted order as the array A described in Sec-
tion d.2.1] The procedure then splits this array into K consecutive subarrays of equal
size, leaving K — 1 individual keys between each subarrayﬁ These K — 1 keys become
the keys of the root B-tree. The procedure is then applied recursively to each subarray.
When applied to an array whose size is less than K, the algorithm returns a leaf node.
When applied to an array whose size is greater than or equal to K but less than 2K,
it splits the array into a node containing the first K — 1 keys, and a single leaf node

containing the remaining keys, which becomes a child of the first.

4.4.2 Batch queries

To fully saturate the GPU we need to execute many queries simultaneously. A grid
receives the complete set of N-gram queries and each block processes a single query

by performing a sequence of K-ary searches on B-tree nodes.

4.5 Experiments

I compared my open-source GPU language model gLLM with the CPU language model
KenLLM (Heafield, 201 I)EE] KenLLM can use two quite different language model data
structures: a fast probing hash table, and a more compact but slower trie, which in-
spired my own language model design. Except where noted, the B-tree node size

K =31, and I measure throughput in terms of query speed, which does not include the

4Since the size of the array may not be exactly divisible by K, some subarrays may differ in length by
one.

Shttps://github.com/XapaJlaMnu/gLM

®https://github.com/kpu/kenlm/commit/9495443
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cost of initializing or copying data structures, or the cost of moving data to or from
the GPU. Unfortunately, I could not perform any Machine translation experiments,
because there is no statistical machine translation decoder on the GPU, so batch per-
plexity calculation is the only benchmark I could perform.

I performed my GPU experiments on an Nvidia Geforce GTX Titan Black, a state-
of-the-art GPU, released in the first quarter of 2015 and costing 1000 USD. The CPU
experiments were performed on two different devices: one for single-threaded tests and
one for multi-threaded tests. For the single-threaded CPU tests, I used an Intel Quad
Core 17 4720HQ CPU released in the first quarter of 2015, costing 280 USD, and
achieving 85% of the speed of a state-of-the-art consumer-grade CPU when single-
threaded. For the multi-threaded CPU tests I used two Intel Xeon E5-2680 CPUs,
offering a combined 16 cores and 32 threads, costing at the time of their release 3,500
USD together. Together, their performance specifications are similar to the recently re-
leased Intel Xeon E5-2698 v3 (16 cores, 32 threads, costing 3,500USD). The different
CPU configurations are favorable to the CPU implementation in their tested condi-
tion: the consumer-grade CPU has higher clock speeds in single-threaded mode than
the professional-grade CPU; while the professional-grade CPUs provide many more
cores (though at lower clock speeds) when fully saturated. Except where noted, CPU
throughput is reported for the single-threaded condition.

Except where noted, my language model is the Moses 3.0 release English 5-gram
language model, containing 88 million n—grams[] The benchmark task computes per-
plexity on data extracted from the Common Crawl dataset used for the 2013 Work-
shop on Machine Translation, which contains 74 million words across 3.2 million sen-
tencesﬁ Both gLLM and KenLLM produce identical perplexities, so I am certain that my
implementation is correct. Except where noted, the faster KenLM Probing backend
is used. The perplexity task has been used as a basic test of other language model

implementations (Osborne et al., 2014; Heafield et al., 2015).

4.5.1 Query speed

When compared to single-threaded KenLM, my results (Table {.3]) show that gLM is
over six times faster than the fast probing hash table, and nearly fifteen times faster

than the trie data structure, which is quite similar to my own, though slightly smaller

Thttp://www.statmt.org/moses/RELEASE-3.0/models/fr-en/lm/europarl.Im. 1
8http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz
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LM (threads) Throughput Size (GB)
KenLM probing (1) 10.3M 1.8
KenLM probing (16) 49.8M 1.8
KenLLM probing (32) 120.4M 1.8
KenlLM trie (1) 4.5M 0.8
gLM 65.5M 1.2

Table 4.3: Comparison of gLM and KenLLM on throughput (N-gram queries per second) and data

structure size.

due to the use of compression.

When I fully saturate the professional-grade CPU, using all sixteen cores and six-
teen hyperthreads, KenLM is about twice as fast as gLM. However, the CPU costs
nearly four times as much as the GPU, so economically, this comparison favors the
GPU.

On first glance, the KenLM’s scaling from one to sixteen threads is surprisingly
sublinear. This is not due to vastly different computational power of the individual
cores, which are actually identical. It is instead due to scheduling, cache contention,
and—most importantly—the fact that the CPUs implement dynamic overclocking: the
base clock rate of 2.7 GHz at full saturation increases to 3.5 GHz when the professional
CPU is underutilized, as when single-threaded; the rates for the consumer-grade CPU

similarly increase from 2.6 to 3.6 GHZH

4.5.2 Effect of B-tree node size

What is the optimal K for the B-tree node size? I hypothesized that the optimal size
would be one that approaches the size of a coalesced memory read, which should al-
lows to maximize parallelism while minimizing global memory accesses and B-tree
depth. Since the size of a coalesced read is 128 bytes and keys are four bytes, I hy-
pothesized that the optimal node size would be around K = 32, which is also the size
of a warp. I tested this by running experiments that varied K from 5 to 59, and the
results (Figure .10 confirmed my hypothesis. As the node size increases, throughput
increases until a node size of 33 is reached, where it steeply drops. This result high-
lights the importance of designing data structures that minimize global memory access

and maximize parallelism.

9Intel calls this Intel Turbo Boost.
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Figure 4.10: Effect of BTree node size on throughput (n-gram queries per second)

I was curious about what effect this node size had on the depth of the B-trees
representing each trie node. Measuring this, I discovered that for bigrams, 88% of the
trie nodes have a depth of one—I call these B-stumps, and they can be exhaustively
searched in a single parallel operation. For trigrams, 97% of trie nodes are B-stumps,
and for higher order n-grams the percentage exceeds 99%. To put this in perspective: it
means that in the vast majority of cases, the GPU can find the relevant data (if it exists)

in a single fetch, followed by a simultaneous comparison of every value in the array.

4.5.3 Saturating the GPU

A limitation of my approach is that it is only effective in high-throughput situations
that continually saturate the GPU. In situations where a language model is queried
only intermittently or only in short bursts, a GPU implementation may not be useful.
I wanted to understand the point at which this saturation occurs, so I ran experiments
varying the batch size sent to my language model, comparing its behavior with that
of KenLM. To understand situations in which the GPU hosts the language model for
query by an external GPU, I measure query speed with and without the cost of copying
queries to the device.

My results (Figure 4.11)) suggest that the device is nearly saturated once the batch
size reaches a thousand queries, and fully saturated by ten thousand queries. Through-
put remains steady as batch size increases beyond this point. Even with the cost of

copying batch queries to GPU memory, throughput is more than three times higher than
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oM KenLLM probing

- Kenl M trie
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Figure 4.11: Throughput (N-gram queries per second) vs. batch size for gLM, KenLLM probing, and
KenlLM trie.

Regular LM Big LM

KenlLM 10.2M 8.2M
KenlLM Trie 4.5M 3.0M
glM 65.5M S55M

Table 4.4: Throughput comparison (n-gram queries per second) between gLM and KenLM with a 5

times larger model and a regular language model.

that of single threaded KenLLM. I have not included results of multi-threaded KenLM
scaling on Figure d.TT|but they are similar to the single-threaded case: throughput (as

shown on Table[d.3)) plateaus at around one hundred sentences per thread.

4.5.4 Effect of model size

To understand the effect of model size on query speed, I built a language model with
423 million n-grams, five times larger than my basic model. The results (Table 4.4)
show an 18% slowdown for gLM and 20% slowdown for KenLLM, showing that model

size affects both implementations similarly.

4.5.5 Effect of N-gram order on performance

All experiments so far use an N-gram order of five. I hypothesized that lowering the
n-gram order of the model would lead to faster query time (Table [A4.5). I observe

that N-gram order affects throughput of the GPU language model much more than the
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S-gram 4-gram 3-gram

KenlL.M 10.2M 9.8M 11.5M
KenlLM Trie 4.5M 4.5M 5.2M
gLM 65.5M 719M 93.7M

Table 4.5: Throughput comparison (n-gram queries per second) achieved using lower order n-gram

models.

CPU one. This is likely due to effects of backoft queries, which are more optimized in
KenLLM. At higher orders, more backoff queries occur, which reduces throughput for
gL.M.

Effect of templated code My implementation initially relied on hard-coded values
for parameters such as B-tree node size and N-gram order, which I later replaced with
parameters. Surprisingly, I observed that this led to a reduction in throughput from
65.6 million queries per second to 59.0 million, which I traced back to the use of
dynamically allocated shared memory, as well as compiler optimizations that only
apply to compile-time constants. To remove this effect, I heavily templated my code,
using as many compile-time constants as possible, which improves throughput but also

allows for changes in parameters without recompilation.

4.5.6 Bottlenecks: computation or memory?

On CPU, language models are typically memory-bound: most cycles are spent in ran-
dom memory accesses, with little computation between accesses. To see if this is true
in gLM I experimented with two variants of the benchmark in Figure .3} one in which
the GPU core was underclocked, and one in which the memory was underclocked.
This effectively simulates two variations in my hardware: A GPU with slower cores
but identical memory, and one with slower memory, but identical processing speed.
I found that throughput decreases by about 10% when underclocking the cores by
10%. On the other hand, underclocking memory by 25% reduced throughput by 1%. I
therefore conclude that gl.M is computation-bound, which is good for future proofing,
because communication improves much slower than computation with newer hardware
generations. | expect therefore that gLM will continue to improve on future genera-
tions of parallel devices offering higher theoretical floating point performance without

the need of code modifications.
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4.6 Conclusion and Future work

I have designed the first n-gram language model for a vector processor. I have shown
that in spite of the architecture being different, the underlying rule is still the same: in
order to extract maximum performance we need to minimize memory accesses. My
implementation and code are specific to the GPU, but the design, data structures and
much of the actual code are likely to be useful to other hardware that supports SIMD
parallelism, such as the Xeon Phi.

I designed my GPU language model with the goal to use it eventually in a statistical
machine translation decoder. At the time of designing it there was already work on
GPU phrase table (He et al., 2013, 2015), so the only component remaining to build a
bare bones SMT decoder would be the search (Table d.6)). I was aware of related GPU
work on dynamic programming problems (Canny et al., 2013} |Hall et al., [2014) and
as well as GPU based speech recognition systems (Chong et al., 2009, [2008)), which I

intended to use as a starting point for implementing search.

CPU GPU
Language Model v v
Translation Model v v
Decoding 4 X

Table 4.6: Novelty matrix for MT components on the GPU

Although phrase-based search on a GPU is an interesting problem with some ongo-
ing work (Argueta and Chiang, 2017, 2018), much of the field shifted in the direction
of neural machine translation and because of that I abandoned my ambitions to design
a phrase-based decoder on the GPU. Nevertheless a standalone GPU based n-gram
language model could still be useful.

Neubig and Dyer|(2016) show how to interpolate a n-gram language model and an
RNN language model, as the former models rare words much better than the neural
network solution. I could use my implementation to efficiently integrate an n-gram
language model in a neural one and use that to explore LM interpolation within neural

machine translation systems similar to the work of |Giilcehre et al.|(2015)).
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Accelerating Asynchronous
Stochastic Gradient Descent on

distributed hardware

As discussed in Chapter 4, statistical machine translation became largely superseded
by neural machine translation. Neural machine translation training is very computa-
tionally expensive, often taking weeks on multiple GPUs. In this chapter, I present
methods to accelerate neural network training on multiple GPUs and use machine
translation as a case study.

Gradient descent is the most popular way to train neural networks. Gradient de-
scent aims to minimise the error when the neural network predicts labels. Since neural
networks are very good at approximating functions, if we run SGD for long enough
we will overfit the model to the training sit and make it useless for predicting unseen
data. To prevent overfitting, a strategy commonly known as early stopping is used,
where the cross-entropy on the validation set is periodically examined and if it stops
decreasing, the training is halted. There are three main variants of gradient descent:

Batch gradient descent where we first compute the gradient of a cost function C
(typically cross-entropy) with regards to the parameter 0 for the entire training dataset

D and then update 0 based on the gradient and some learning rate n:

0=0—1 x VeC(8(D)) (5.1)

The crucial thing to note here is that we need to compute the gradient for the whole
dataset (also known as one full epoch), before doing a single gradient update, which

brings several drawbacks (Masters and Luschi, 2018]):

67
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e It consumes vast amounts of memory for large datasets, as the whole dataset
needs to be held in memory in order to compute its gradient. This could be
overcome by a technique of delaying gradient updates, described in 5.2.3, where

the dataset is split into chunks and its gradient is incrementally computed.

e It could lead to the model getting stuck in saddle points, due to the non-convex
nature of neural network optimization. In a non-convex problems we want an
optimizer that introduces extra noise during training so that saddle points can be

overcome.

e [t also doesn’t allow on-the-fly model updates, such as updating the model when

more data becomes available or fine tuning it.

Methods such as delayed gradient updates, which I introduce later in this chapter, could
help with the memory issue of batch gradient descent, but the other shortcomings still
stand.

Online stochastic gradient descent addresses the shortcomings of batch gradient

descent by updating 0 after each training example x:
0=0-—mxVeC(0(x)) (5.2)

This means that there ample training flexibility and there is no longer an issue with
memory usage or on-the-fly model updates. Furthermore online gradient descent offers
offers faster convergence, due to updating the parameters more often and putting the
model in a better place before evaluating the next example. This is also helpful with
the non-convex optimization, because there is extra noise introduced during training
that could overcome saddle points. However there is another set of shortcomings with
this optimization method: It is inefficient in terms of computation due to the frequent
updates to the parameters; if the training data has high variance, it has the potential to
push the parameters in a bad place.

Mini-batch stochastic gradient descent attempts to compromise and bring the
best out of both extremes described above. It groups the training data into mini-
batches of n datapoints, computes and sums the gradient over them and then updates

the model parameters:

6=06 —n X VeC(G(X,‘..Xn)) (5.3)

Mini-batch SGD has several key advantages:
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e [t maps very well to vector processors as mini-batches form a conveniently large
matrix which maps efficiently to vector processors, but not too large as to not fit

on the device memory.

e Training on data with high variance is a lot more robust than online SGD, as the

many datapoints in a mini-batch have a smoothing effect.
e Mini-batches help escape saddle points during training (Ge et al., 2015).

SGD is by far the most widely used variant of gradient descent for neural machine
translation training because it works very well in practise and maps efficiently to the
hardware.

With training times measured in days, parallelizing SGD is valuable for making
experimental progress and scaling data sizes. Modern systems contain up to ten GPUs
and there is not enough parallel computation available in recurrent neural networks to
allow for model parallelism to saturate the available hardware. We need to do data
parallelism, training mini-batches in parallel on differet workers and there are two

options to do so:

Synchronous SGD where we have multiple workers processing mini-batches in par-
allel and when all workers finish their computations, all gradients are summed
up together and the model parameters are updated. In effect synchronous SGD
simulates training with » times larger mini-batch size where 7 is the number of
workers used. The disadvantage of using synchronous SGD is that often workers
need to idle waiting for everyone to complete their computations before being
able to proceed with the next mini-batch, leading to sub-optimal performance.
This is especially problematic in settings where mini-batches can have varying
sizes and neural machine translation is such a setting. The reason is that in the
neural machine translation case, mini-batches are formed of parallel sentences of
natural language, and sentences in natural language come in varying sizes. Even
if we try to form mini-batches of similar length by targeting number of words
instead of number of sentences in the mini-batch construction strategy, it is not
possible to achieve completely identical mini-batches. This issue is looked at in

depth in Section 5.5.1.

Asynchronous SGD where we have multiple devices processing mini-batches in par-
allel and when each worker finishes its computation, it updates the model, avoid-

ing explicit synchronisation and thus worker idling. As shown on Table[5.1] this
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setting allows for nearly linear increase in training speed with the increase of
number of GPUs, unlike synchronous SGD. Unfortunately asynchronous SGD
brings the stale gradient problem (Figure [5.1), where a worker can update the
neural network parameters based on a gradient computed against an older ver-
sion of those parameters (Abadi et al., 2016). This is effect is harmful to the
model convergence and potentially requires more epochs, before convergence,

negating any speed benefits over synchronous SGD.

GPU A
process process
a mini-batch ﬁa mini-batch
Parameter = P P P P
Server 0 1 2 3 4
GPU B
process process
a mini-batch a mini-batch

Figure 5.1: Gradient staleness in asynchronous SGD. By the time GPU A submits its gradient, the
underlying parameters P may have changed, because GPU B has already updated the model with its
gradient. This means GPU A’s gradient is stale. In a similar manner, B’s gradient is stale for the second

mini-batch.

Goyal et al.| (2017) train ImageNet (Deng et al., 2009), in one hour by using 256
GPUs in parallel and increasing the mini-batch size to reduce communication. In this
chapter I explore the applicability of the work of |Goyal et al.| (2017) in the neural
machine translation setting. Neural machine translating differs from the ImagetNet

task in several key aspects:

e Goyal et al.|(2017) uses a variant of ResNet-50 (He et al., 2016)), which is a con-

volutional neural networks with 25.6M parameters (Zagoruyko and Komodakis,
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2016). NMT uses recurrent neural networks with around 200M parameters,
nearly an order of magnitude moreE] As such NMT systems consume a lot more

GPU memory and more computational resources for processing a mini-batch.

e Mini-batch sizes in neural machine translation consume a lot more memory due
to parallel sentences and their embeddings consuming more memory than im-
ages, because the sequences and their embeddings are larger than the image
convolutions. This makes it impossible to fit mini-batches of similar magnitude
as the ones in |Goyal et al| (2017) as we quickly run out of memory (Table [5.1).
In addition to that, due to variable-length sentences, machine translation sys-
tems commonly fix a memory budget then pack as many sentences as possible
into a dynamically-sized batch (Junczys-Dowmunt et al., 2018)). As such, the
mini-batch size is controlled by the memory amount rather than the number of

training examples.

After considering the above and the training speed at different number of GPUs
(Table [5.1)), I chose asynchronous SGD for my experiments. This method provides
nearly double the training speed of synchronous SGD, even if it has convergence issues
due to the stale gradient problem. I aim to overcome the convergence problems using

a variety of methods and benefit entirely from the higher training speed.

GPUs Variant VRAM Words per Batch WPS

1 n/a 3GB 3080 8.3k
1 n/a 7 GB 7310 9.5k
4 Synchronous 3 GB 3080 15.7k
4 Asynchronous 3 GB 3080 19.5k
4 Synchronous 7 GB 7310 23.5k
4 Asynchronous 7 GB 7310 36.6k
4 Asynchronous 10 GB 10448 40.2k

Table 5.1: Relationship between the GPU Memory (VRAM) budget for batches, number of source
words processed in each batch and words-per-second (WPS) measured on a shallow model for different
number of GPUs and different variants of SGD.

'Measurement taken from the models of [Haddow et al.| (2018).
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5.1 Parallel asynchronous SGD

I proceed to give a detailed overview of the asynchronous SGD implementation I used:
Similar to |Dean et al.[|(2012), it uses data parallelism in which each GPU computes a
gradient on part of the data. Each GPU contains one full copy of the model parameters,
which it uses to process a mini-batch and in addition to that it contains a fraction of
the parameter server, which contains the up-to-date model parameters (the local copy
of the model might be stale, due to the stale gradient problem described earlier). For
efficiency, the parameter server is sharded over all GPUs, meaning it is split in equal
parts across them. Thus each GPU acts both as a worker, processing mini-batches; and
as a server, distributing serving 1/Nth of the parameters, where N is the number of
GPUs. The architecture is described on Figure [5.2] Mini-batches processing goes as

follows:

e A worker receives a new mini-batch for processing and fetches an up-to-date
model from the parameter server. This involves transferring Nﬁlm bytes from
remote GPUs where m is the model size in bytes. This many-to-one operation

corresponds to "Parameter Fetch’ in Figure

e The worker then uses the local model copy to process the mini-batch and com-

pute a gradient.

e The worker uses an optimizer (in my case Adam: Kingma and Ba, 2015) to
update the parameter server, which again involves I%m bytes of remote GPU

communication. This one-to-many operation corresponds to *Gradient Push’ in

Figure[5.1]

It is important to note that mutual exclusivity is enforced through locking, so that a
shard from the parameter server is never accessed while it’s being updated by another
thread. This contrasts with the Hogwild method (Recht et al., 2011), where there is no
enforced mutual exclusivity for the benefits of speed, but there is no guarantee that all
model updates go through.

The more GPUs are involved in the parallel SGD, the more remote GPU com-
munication occurs. Remote GPU communication, as shown in Chapter 2, is many
times more expensive than local GPU communication so ideally we want to miminize
it. |Goyal et al.| (2017) made the same observation and this is why they increased the

mini-batch size, as that improves the computation to communication ratio.
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Figure 5.2: Parallel SGD with sharded parameters. Image source: |Aji and Heafield| (2017)

5.2 Increasing performance with larger batches and de-

layed updates

In this section, I introduce the methods that I developed to accelerate asynchronous
SGD and the model and dataset I used for developing them. My goal is to increase the
training speed without sacrificing model quality, or the number of epochs necessary

for convergence.

5.2.1 Evaluation metrics

Training speed 1 measure the speed with which the training set is processed with the
Words-per-Second (WPS) metric.

Cross Entropy I measure the cross-entropy on the dev set (on all graphs denoted as
CE) and on the training set (denoted as CE T). The cross-entropy on the training set
shows whether the model is more general (less overfitted towards the training data) or
not. The cross-entropy on the dev set shows how certain the model is when translating
the dev set. Since the training set is in general quite large, I used a sample of 10000

sentences from it. The same holds for every other place in this chapter where the
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training set cross-entropy is measured.

BLEU I measure the translation quality of the dev set in terms of BLEU (Papineni
et al., 2002).

Training time 1 measure the End-to-End training time for training each system. The
end of training is determined by 5 consecutive stalls in the cross-entropy metric of
the validation set. Validation frequency is adjusted depending on the mini-batch size
so that it happens more often on systems that have larger mini-batches (or delayed
gradient updates). This ensures that validation steps happen after roughly the same

amount of training data has been processed.

5.2.2 Baseline systems

Dataset I used the Romanian—English task from WMT 16 (Bojar et al., 2016) with

backtranslated data, resulting in 2.6 million parallel sentences.

Hardware and Software 1used 4 Tesla P 100 GPUs in a single node with the Marian
NMT framework for training (Junczys-Dowmunt et al., 2018]).

I trained five separate baseline systems: three systems that use vanilla synchronous
or asynchronous SGD and two systems based on the work of |Aj1 and Heafield (2017)

which also aims to increase training speed:

Asynchronous baseline This system is equivalent to that of |[Sennrich et al.| (2016),
which was the first place constrained system (and tied for first overall in the WMT16
shared task). By equivalent I mean that the model and hyperparameters are the same:
shallow bidirectional GRU (Cho et al., 2014} encoder-decoder , but it is trained using
the Marian machine translation toolkit (Junczys-Dowmunt et al., 2018), as opposed
to Nematus (Sennrich et al., 2017b). The memory allowance for mini-batches in my
system is 3 GB (for an average batch size of 2633 words). Adam (Kingma and Ba,
20135)) is used to perform asynchronous SGD with learning rate of 0.0001.

Synchronous Baseline [ also compare with a second baseline system that uses syn-
chronous SGD for training. It differs slightly in hyperparameters, using non-default

Adam parameters (B; = 0.9,2 = 0.98), warmup of 16000 mini-batches and inverse



5.2. Increasing performance with larger batches and delayed updates 75

square root cooldown following which are the recommended settings from |Vaswani

et al.|(2017) for training a NMT system using synchronous SGD.

Optimized Asynchronous baseline Since I apply optimizations over asynchronous
SGD, I performed a learning rate and mini-batch-size parameter sweep over the asyn-
chronous baseline system and settled on a learning rate of 0.00045 and 10 GB memory
allowance for mini-batches (average batch size of 10449 words). This is the fastest
system I could train without sacrificing translation performance and without changing

the codebase. In my experiments, I refer to this system as "Optimized asynchronous".

Asynchronous + gradient dropping This system uses the work of |Aji and Heafield
(2017) to drop the lower 99% of the gradients based on absolute values in order to
drastically reduce inter-GPU communication. I compare this to my work as it is an

alternative method to increase training speed by reducing communication.

Optimized asynchronous + gradient dropping This system is the same as the one
described above, except that I use the hyperparameters of the parameter sweeped base-
line.

Table show each of those systems and their training performance. The system
that trains the fastest is the optimized asynchronous where gradient dropping is used,
followed by the optimized asynchronous. In the rest of my experiments my goal is to
beat these training times without experiencing degradation in BLEU. It is important
to note that while the system using gradient dropping does train faster, the speed up
effect is smaller when using larger mini-batches (as is the case with the optimized
asynchronous system). Furthermore this model has slightly lower BLEU, on top of
taking more epochs to converge, which hints that gradient dropping hurts convergence.
We observer that the cross-entropy on the training set doesn’t always correlated to the

cross-entropy on the dev set.

5.2.3 Large mini-batches and delayed gradient updates

I aim to increase speed, in terms words-per-second (WPS), by increasing the batch
size. As discussed, larger batches have two well-known impacts on speed: making
more use of GPU parallelism and communicating less often.

After raising the batch size to the maximum that fits on the GPU, while leaving

space for the model parameters, I emulate even larger batches by processing mul-
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System Hours Epochs BLEU CE CET WPS
synchronous 14.3 11 353 50.63 20.43 15.7k
asynchronous (0) 12.2 13 35.61 5047 18.12 19.5k
(0) +|Aji and Heafield (2017)  6.23 12 35.16 50.86 18.16 26.9k
optimized asynchronous (1) 4.97 10 35.56 5090 18.72 40.2k
(1) +/Aji and Heafield (2017) 4.32 11 35.16 52.02 19.66 41.5k

Table 5.2: Romanian-English baseline systems. The systems that are bolded will be used for compari-

son in my next experiments.

tiple mini-batches and summing their gradients locally without sending them to
the optimizer (Figure [5.3)). I will refer to this strategy as delayed gradient updates.
The delayed gradient updates strategy requires extra memory equal to the size of the
model, as we need to store a gradient for every single parameter, but in return it al-
lows for arbitrary large mini-batch size. It increases speed because communication is
reduced (Table [5.3), just as if we were processing a much larger mini-batch, but at a
constant memory cost, as opposed to linearly increased memory cost, associated with

increasing the mini-batch size.

GPUs Variant VRAM 1 Words per Batch WPS

4 Asynchronous 3 GB 1 3080 19.5k
Asynchronous 7 GB 1 7310 36.6k
Asynchronous 10GB 1 10448 40.2k
Asynchronous 20* GB 2 20897 44.2k
Asynchronous 30* GB 3 31345 46.0k
Asynchronous 40* GB 4 41794 47.6k

~ B~ B~ B~ B

Table 5.3: Updated version of Table which includes delayed gradient updates configurations (pre-

fixed by *). Synchronous SGD experiments were not performed due to the slower overall training speed.

I introduce parameter T, which is the number of iterations a GPU performs locally
before communicating externally as if it had run one large batch. The Words-per-
second (WPS) column on Table[5.3|shows the effect on corpora processing speed when
applying delayed gradient updates for different values of T. When increasing the mini-
batch size T times without touching the learning rate, there are effectively T times fewer
updates per epoch. On the surface, it might seem that these less frequent updates are

counterbalanced by the fact that each update is accumulated over a larger batch, and
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Figure 5.3: Delayed gradient updates, in asynchronous SGD. GPU B performs vanilla SGD, where the

model is updated at each timestep, whereas GPU A saves the gradient locally and updates the model

only after processing 2 mini-batches.

thus the gradient is bigger. But practical optimization heuristics like gradient clipping

limit the maximum absolute value of the gradient, meaning that in effect the model is

updated less often, resulting in slower convergence. Goyal et al. (2017) recommend

scaling the learning rate linearly with the mini-batch size in order to maintain conver-

gence speed and this is what I did as well: For all the systems, the learning rate is

multiplied by the value of .

System Hours Epochs BLEU CE CET WPS
optimized asynchronous (1) 4.97 10 3556 5090 18.72 40.2k
(1) +/Aji and Heafield (2017) 4.32 11 35.16 52.02 19.66 41.5k
(1) + delayed updatest =2 (2) 4.20 11 34.82 51.68 21.53 44.2k

Table 5.4: Romanian-English baseline systems. The systems that are bolded will be used for compari-

son in my next experiments.

Table [5.4] shows the results of applying © = 2 delayed gradient updates, as well

as learning rate scaling with the same factor to the optimized asynchronous baseline.
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Despite sending full gradients, as opposed to only 1%, my model trains faster in terms
of words per second. This means that delaying gradient updates is more effective at
increasing training speed than the work of |Aji and Heafield| (2017). While my model
does achieve faster training time, it comes at the cost of lower BLEU score and more
epochs necessary to converge. Therefore, the increase of training speed when delaying
gradient updates comes at the cost of model quality, which is not the desired goal
of my optimizations. We observe that delaying gradient updates has better dev set
cross-entropy scores than the work of |/Aj1 and Heafield| (2017) but this is not reflected
in better BLEU. Still convergence is worse compared to all other systems, especially

when we consider the training set cross-entropy.

5.3 Improving model convergence

I have shown that training speed can be increased by artificially increasing the mini-
batch size, however the model then takes more epochs to converge now, which means
parts of the benefits of the faster training are lost, which is contrary to my goal. In
order to ensure that I have the same convergence rate with my improved training speed,

I applied the following techniques:

5.3.1 Warmup

Goyal et al.| (2017) point out that just increasing the learning rate performs poorly for
very large batch sizes. The reason is that when the model is initialized at a random
point, the error after the first updates will be quite large and so would be the gradient.
When the learning rate is large, the first updates will push the parameters too much,
resulting in lots of jerky updates until the model finds a good point, similar to the
illustration on Figure 5.4, However in practise the model frequently can’t recover
from bad initialization and this leads to suboptimal convergence point. (Goyal et al.
(2017) suggest that initially model updates should be small so that the model will not

be pushed in a suboptimal state.

Lowering initial learning rate Goyal et al.|(2017)) lower the initial learning rate and
gradually increase it over a number of mini-batches until it reaches a predefined maxi-
mum. This technique is also adopted in the work of |Vaswanti et al.| (2017)). This is the

canonical way to perform warmup for neural network training.



5.3. Improving model convergence 79

Local optimizers Learning rate warmup addresses the problem of big potentially
harmful updates to the model by reducing the learning rate, so that the initial updates
to the model carry less weight. 1 propose an alternative strategy that addresses the
core issue of the model not being updated often enough due to the mini-batch size
being too large. Since I emulate large batches by running multiple smaller batches,
I can use the intermittently computed gradient to update the model. I introduce
additional worker-local optimizers, that update the local copy of the model between
each processed batch. I also update the shard of the global model that happens to be on
the same GPU. I maintain the model update procedure described in section [5.1] where

a global optimizer run is performed using the summed up gradient.

Local optimizers update the worker-local model over which gradients are produced,
which in turn means that every mini-batch that gets processed will see a slightly more
up-to-date model and produce a more accurate gradient, which in turn will produce
better updates for the global model. Updating the worker-local shard of the global
model reduces model staleness, because it allows all workers to perform updates over
parameter shards that are updated every mini-batch as opposed to every T mini-batches.
Local updates are very fast, because they don’t involve remote device communication,

therefore the cost of using local optimizers in my model is negligible.

I use local optimizers purely as a warmup strategy, turning them off after the initial
phase of the training. Empirically, I found that I can get the best convergence by using
them for the first 4000 mini-batches that each device sees (out of potentially hundreds
of thousands, depending on the training set). If I use local optimizers throughout the
training, I achieve worse convergence results. I find the likely culprit for that is updat-
ing the local model shard, based on the gradient of only a single worker, uncoordinated

with the rest of the shards, because it introduces extra noise during training.

Updating the parameter shard of the global model bears some resemblance to the
Hogwild method (Recht et al., 2011) as I don’t synchronize the updates to the shard,
however, global updates are still synchronised. The concept of per-worker optimizers
appears first in the work of Zhang et al.|(2014), which served as an inspiration for my
implementaion. Note that when applying delayed gradient updates, the effective batch
size that the global optimizer deals with is T times larger than the mini-batch size on
which the local optimizers runs. Since local optimizers see gradients much smaller
than the global optimizers, as they are a product of just one mini-batch, the learning
rate they use is proportionally scaled down, compared to the one used by the global

optimizers.
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System Hours Epochs BLEU CE CET WPS
optimized asynchronous (1) 4.97 10 3556 50.90 18.72 40.2k
(1) +/Aji and Heafield (2017)  4.32 11 35.16 52.02 19.66 41.5k
(1) + delayed updates T =2 (2) 4.20 11 34.82  51.68 21.53 44.2k
(2) + local optimizers (3) 3.66 10 35.45 51.32 18.77 44.2k
(2) + warmup (4) 4.87 13 35.29 50.78 19.36 44.2k

Table 5.5: Romanian-English systems with different types of warmup. The systems in bold are the
two new ones compared in this table. My local optimizers warmup system (3) significantly outperform

learning rate warmup in terms of time-to-convergence.

I compare and contrast the two warmup strategies on Table[5.5] By itself, learning-
rate warmup on top of delayed gradient updates offers slower convergence but to a
better point compared to local optimizers at least in terms of cross-entropy. It does
however take more epochs, which is perhaps because the initial updates were too small.
Using local optimizers on the other hand reduces the number of epochs necessary to
achieve convergence, improves the BLEU score on top just using delayed gradient
updates and produces the best end-to-end training time thus far. Either of the warmup
strategies result in lower training set cross-entropy. meaning that they both allow for
the model to train better. I have shown that reducing communication in multi-GPU
setting is the key to improving performance: My system with delayed gradient updates
(2) achieves the fastest word-per-second rate. I also show that computation is much
cheaper than inter-GPU communication, so when I introduce worker-local optimizers
(system (3) on Table [5.5)), there isn’t any noticeable decrease in performance, despite

the extra computation involved.

5.3.2 Momentum tuning and momentum cooldown

Goyal et al.| (2017) and Vaswani et al.| (2017) both employ cooldown strategies that
lower the learning rate towards the end of training. Inspired by the work of Hadjis
et al. (2016) however I decided to pursue a different cooldown strategy by modify-
ing the momentum inside Adam’s parameters (Kingma and Ba, 2015)). Momentum is
an addition to the standard SGD, usually computed as function of previous gradients
which serves to smooth out updates, prevent spikes in gradients and push the model
over saddle points.

Hadjis et al. (2016) show that fine tuning the momentum parameters is not a well
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explored area in deep learning. Most researchers simply use the default values for
momentum for a chosen optimizer. |Hadjis et al. (2016)) argue that this is an oversight
especially when it comes to asynchronous SGD, because the asynchronicity adds ex-
tra implicit momentum to the training which is not accounted for. Because of this,
asynchronous SGD has been deemed ineffective by |Abadi et al.| (2016), as without
momentum tuning, the observed increase in training speed is negated by the lower con-
vergence rate, resulting in near-zero net gain. I observed this as well: Training a model
with delaying gradient updates and scaled learning rate requires more epochs to con-
verge compared to my baseline system. However, |Hadjis et al.| (2016)) show that after
performing a grid search over momentum values, it is possible to achieve convergence
rates typical for synchronous SGD even when working with many asynchronous work-
ers. An example of the effect of momentum tuning can be seen on Figure where
reducing the momentum from 0.99 to 0.84 results in a much better convergence point

in terms of cross-entropy as well as reduced number of steps towards convergence.

The downside of momentum tuning is that I can not offer rule-of-thumb values, as
they are individually dependent on the optimizer used, the neural model, the number
of workers and the batch size. Hadjis et al. (2016) perform grid search to substantially
improve convergence rate and I take a similar route. In my experiments, I lowered
the overall momentum in Adam using B; = 0.93 and B, = 0.997 (the default settings
being B; = 0.9 and B, = 0.999). In addition to that I performed momentum cooldown
where the momentum was further reduced to f; = 0.92 and B, = 0.998 after the first
4000 mini-batches that each worker sees. I identified these hyperparameters through a

restricted grid search.

As we can see on Table[5.6] introducing momentum tuning on top of either of my
warmup strategies results in improvements. The local optimizer system with momen-
tum tuning (5) achieves better BLEU score and cross-entropy than just using local
optimizers, while maintaining the same convergence time. The learning rate warmup
system with momentum tuning (6) system needs fewer epochs to converge compared to
just using learning rate warmup and also achieves better BLEU score and CE. Systems
(5) and (6) do show worse training set cross-entropy compared to their non-momentum
tuned versions, meaning those models are slightly more general, but the difference is

quite small.
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Figure 5.4: The effect of different momentum values can massively influence model convergence. The
top image shows that when the momentum is too large, the model updates are too large, overshooting the
desired change. The result is that many more updates are needed until the convergence point is reached.
We can see how tuning the momentum gradually, results in fewer steps to converge on the middle image

and the least on the bottom image. Image source: |Goh|(2017)

5.3.3 Results summary

Compared to the optimized baseline system (1), my best system (5) reduces the training
time by 27%. Progression of the training can be seen on Figure[5.5] my system starts
poorly compared to the baselines in terms of epoch-for-epoch convergence, but catches
up in the later epochs. Due to faster training speed however, the desired BLEU score

is achieved faster (Figure[5.5). To summarize the results:

e Delayed gradient updates improves training speed but worsens convergence,

even when the learning rate is scaled with the increase of the mini-batch size.
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System Hours Epochs BLEU CE CET WPS
optimized asynchronous (1) 4.97 10 3556 5090 18.72 40.2k
(1) +/Aji and Heafield (2017)  4.32 11 35.16 52.02 19.66 41.5k
(1) + delayed updates T =2 (2) 4.20 11 3482  51.68 21.53 44.2k
(2) + local optimizers (3) 3.66 10 3545 5132 18.77 44.2k
(2) + warmup (4) 4.87 13 3529 50.78 19.36 44.2k
(3) + momentum tuning (5) 3.66 10 3548 50.87 18.80 44.2k
(4) + momentum tuning (6) 3.98 11 35.76 50.73 20.36 44.2k

Table 5.6: Romanian-English results from my exploration and optimizations. The best results are
achieved when I tune the momentum values on top of the previous best performing system. Once again

the bolded text represents the newly compared systems in this table.

e Applying warmup helps convergence. I found that using local optimizers as a
warmup strategy shows faster convergence compared to learning rate warmup at

almost no penalty to BLEU or cross-entropy (System 5 vs system 6).
e Fine tuning momentum is the key to achieving best model convergence.

e Against the system equivalent to the one used in WMT 16 (Sennrich et al., 2016),
my methods achieve nearly 4 times faster training time with no discernible
penalty in BLEU or CE.

e For contrast, the other communication reducing method tested, the work of |Aj1
and Heafield (2017), is slower than my work and achieves worse BLEU and CE.

5.4 Additional applications

I used the Romanian-English model for developing my methods, because it was fast to
train, due to the training set being relatively small and the neural network being shal-
low. After I developed my methods and parameters, I tested them in several different

settings, to confirm that the results generalize over a number of different settings:

5.4.1 A deep RNN

With deep RNN models, which contain multiple recurrent layers on both the encoder

and decoder unlike shallow models, the parameters take more of the available VRAM
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Figure 5.5: BLEU and cross-entropy training progression for the Romanian-English system. Due to the
higher training speed and similar per-epoch training progression, my system achieves the target BLEU

score faster.

leaving very little for mini-batches. I found that larger T values are useful when dealing
with such models. In this memory limited scenario, I apply T = 4 in order to achieve
mini-batch size of similar magnitude as with the shallow model. 1 demonstrate the
effectiveness of larger T on Table

System Time (h) BLEU CE
Baseline 51.3 25.1 47.31
Async (5)+t=4 39.7 25.07 46.59

Table 5.7: Training times for English-German deep RNN system trained on WMT17 data. My asyn-

chronous system includes the optimizations of system (5) from Table@

The baseline system is equivalent to the second placed system for English-German
at the WMT 2017 competition (Sennrich et al., 2017a). The baseline is trained with
synchronous SGD and I use my best system from the Romanian-English experiments
with the exception that I apply T = 4, instead of T = 2. I do not report the numbers
for asynchronous baseline because I was unable to achieve competitive BLEU scores
without using delayed gradient updates. 1 speculate this is because with this type of
deep model, the mini-batch size is very small leading to very jerky and unstable train-
ing updates. Larger mini-batches ensure the gradients produced by different workers
are going to be closer to one another. The training progression can be seen on Figure
5.6l I show that even though I use 4 times larger mini-batches, I actually manage to

get lower Cross-Entropy epoch for epoch compared to the baseline (Figure[S.6). This,
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coupled with higher training speed, allows my system to achieve 25.2 BLEU in 15
hours compared to 40 for the baseline system. (Figure[5.6)).

English-German on 4 GPUs, Cross Entropy by epoch English-German on 4 GPUs BLEU against time
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Figure 5.6: BLEU and cross-entropy training progression for the English-German system.

5.4.2 A high resource language pair

I built a French-English translation system in order to show how my methods perform
on a high resource language pair. This model has the same hyperparameters as the
Romanian-English system but it is trained on a lot more data: 35.9 Million parallel
sentences taken from the WMT 15 datasets. Results are shown on Figure The
baseline system used is asynchronous SGD. The BLEU score progression is consistent
with the CE progression. The system I developed achieves the maximum BLEU in 20

hours, compared to 33 hours for the baseline system.

5.4.3 A language model

I trained an RNN Language model on 57.8 Million English sentences collected from
WMT 16 monolingual resources. I used a single layer GRU cell with 1024 dimension
and 512 dimensions for the word embeddings. I am able to outperform the baseline
system in terms of both cross-entropy and training time, converging in just half of the

wall-clock time at a lower cross-entropy (Figure [5.8)).
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Figure 5.7: BLEU and cross-entropy training progression for the French-English system.
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Figure 5.8: Language model training progression.

5.5 Training set Cross Entropy

In order to better understand the role that my modifications play on the model conver-
gence, | plotted the training set cross entropy of the Romanian-English, French-English
and the language modelling setting in the previous sections.

Figure [5.9] shows that the training set cross-entropy is quite similar on all systems
measured. However due to the faster training speed, my improved system converges
faster. Overall they follow a similar trend to the dev set results shown on Figure[5.5]

Figure [5.10] shows the cross-entropy training set progression. It is interesting to
note that on the dev set (Figure my best system is better than a baseline since

the start of the training, however the same is not true on the training set. My system
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from Figure E}
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Figure 5.10: Training set cross entropy plots by epoch and against time on the French-English systems

from Figure

starts off slowly and only manages to overtake the baseline towards the end of the first

training epoch after which it proceeds to arrive at a better convergence point compared

to the baseline. The same observation is true for the language model experiment,
shown on Figure [5.T1]
After reviewing figures [5.9] [5.10} [5.11] I conclude that on the relatively small

Romanian-English task my methods produce comparable cross-entropy results on the

training set and any difference is likely the result of noise. On the French-English and

language modelling tasks, which are much higher resource, it is clear that my methods

improve the overall convergence of the model. Therefore any gains on BLEU or on

cross-entropy on the dev set are the result of a better model convergence point, rather
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Figure 5.11: Training set cross entropy plots by epoch and against time on the language model systems
from Figure @

than less overfitting towards the training set.

5.6 Further explorations

In this section I describe some methods that I developed but ultimately did not use in
the best systems, because I found that they were very situational and did not otherwise

generalize well.

5.6.1 Flexible learning rate

As described earlier, neural machine translation experiments have inherently imbal-
anced mini-batch sizes, because the sentences which form mini-batches are of varying
length. To mitigate this neural machine translation systems commonly set a mem-
ory budget for mini-batches and try to fill in as many sentences as they can, grouping
sentences of similar lengths together (Junczys-Dowmunt et al., 2018). This results in
relatively’ balanced mini-batch sizes in terms of number of words, even if internally
they contain very different number of sentences. Even with this heuristic, there is sig-
nificant variance between mini-batches which is only made worse by the introduction
of delayed gradient updates (Table[5.8§).

I hypothesized therefore that overall convergence could be improved by scaling the
learning rate up or down, based on how much the mini-batch size of the particular
mini-batch differs from the average mini-batch size. As shown on table [5.9] flexible

learning rate does allow for slightly faster convergence, compared to my best system,
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RAM T AVG Words ¢ Words
3GB 1 2633 707
7 GB 1 5869 1594
I13GB 1 10566 3335
14*GB 2 11665 2439
26*GB 2 20955 4687
28*GB 4 23323 3655
56*GB 8 46379 4357

89

Table 5.8: Relationship between the RAM budget for batches (* means emulated by summing t smaller

batches) and number of source words processed in each batch. Both average and standard deviation &

are shown. Statistics were collected from 72 mini-batches with the asynchronous baseline system.

but in practice I found that the implementation complexity and the extra hyperparam-

eter exploration would mean this feature is of little practical use.

System Baseline Flexible LR Difference
Romanian-English hours BLEU hours BLEU hours BLEU
Optimized asynchronous  4.46 35.57 4.48 35.19 +0.02 -0.38
+1=2 3.67 3503 395 3507 +0.28 +0.04
+ local optimizers

3.66 3548 336 3553 -0.3 +0.05

& momentum tuning

Table 5.9: Effect of flexible learning rate application on top of the baselines and best systems of the

Romanian-English model. When all optimizations are applied, flexible learning rate allows for slightly

faster training time and a marginal improvement in BLEU.

5.6.2 Cyclic learning rate

I hypothesize that since it is difficult for us to know what is an appropriate learning rate

for different stages of the training process, we could instead cycle continuously through

learning rates during training. At the beginning of each cycle I drop the learning rate to

a predefined minimum value and increase it linearly for a set number of batches until it

reached the maximum learning rate. Then I lower it again to the predefined minimum

and the next the cycle begins.
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Additionally, I also reset the learning rate to the minimum value each time when
there is no improvement in validation cost during a validation step. Empirically, I
found that gradually increasing the learning rate and then dropping it over 40000 mini-
batches works well. This is orthogonal to the usage of local optimizers. Similar ideas
are expressed in the works of|Loshchilov and Hutter|(2016); Gotmare et al. (2018), who
also search for different ways to find the optimal learning rate for any given training
stage. Cyclical warmup did not provide any useful benefits for my test systems and the

experimental results were quite inconclusive. They can be seen in Appendix A.

5.7 Related work

Work on stochastic gradient descent optimization has been quite popular over 2017-

2018, with various work appearing that partially overlap with ours:

On reducing communication Inter-device communication is the limiting factor
when scaling out SGD across multiple GPUs. Aj1 and Heafield (2017)) address the issue
by dropping the lower 99% of the gradient based on absolute value, thus substantially
reducing the size of the communicated gradients, but at a slight cost of model quality.
Mao et al.| (2018)) further refine the work of the|Aj1 and Heafield| (2017), addressing the

model quality issue by applying warmup and momentum tuning.

On addressing momentum I point out earlier in this chapter, that it is possible
the issues with convergence could be due to not accounting for the extra implicit
momentum introduced by out methods. Independently from me, [Shazeer and Stern
(2018)) have done further exploratory work on ADAM’s momentum parameters us-
ing the transformer model (Vaswani et al., [2017)) as a case study and have offered a
mathematical explanation about why different stages of the training require different

momentum values.

On delayed gradient updates Independently from me,[Saunders et al.|(2018)) have
employed delayed gradient updates in syntax NMT setting, where the sequences are
much longer due to the syntax annotation and delayed updates are necessary because
video RAM is limited.

On local optimizers Independently from me, Lin et al. (2018) have developed

their own local optimizer solution as an alternative to increasing mini-batch sizes.
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5.8 Conclusion and Future work

I show yet again that the key to achieving better training speed is to reduce commu-
nication, which in this case required a modification in asynchronous SGD. While I
have demonstrated the methods on GPUs, they are hardware agnostic and can be ap-
plied to neural network training on any multi-device hardware such as TPUs or Xeon
Phis. I was able to achieve up to three times faster end-to-end training on multiple
tasks compared to the baseline systems. For the Romanian-English model, the train-
ing time nearly 3X shorter than the commonly used baseline and 1.5X shorter over a
specifically optimised baseline. When experimenting with English-German the model
is trained 1.3X faster than the baseline model, achieving practically the same BLEU
score and one point lower cross-entropy score. A French-English system is trained
1.65X faster, achieving the same BLEU and better cross-entropy. My methods gener-
alize well to other domains: Using them, I am able to train a language model 2X faster
and to a much better convergence point.

In the future, I would like to apply local optimizers in distributed setting where the
communication latency between local and remote devices varies significantly. In this

setting, local optimizers may be used to synchronize remote models less often.






Chapter 6
Conclusion

In my dissertation I have taken a kaleidoscopic view of optimization centered around
efficient memory accesses. I have examined three separate MT problems in the context
of modern, parallel hardware and proposed modifications that improve performance.
The common theme in all the cases is that big gains can be made from improving mem-
ory access patterns and reducing the communication between different computational

units.

In chapter 3, I have introduced a phrase table for statistical machine translation that
is used as the basis for a high performance phrase based decoder, delivering order-
of-magnitude faster decoding speed than previous implementations. The performance
improvements are due to improved memory locality and reducing the number of mem-
ory accesses during phrase query. This phrase table is later used inside a novel phrase

based decoder designed for high performance.

In Chapter 4, I have introduced the first GPU-based n-gram language model, us-
ing novel data structures that compact and efficient with regards to memory accesses.
While statistical machine translation research is out of fashion nowadays, it consis-
tently outperforms neural machine translation in very low resource settings and is used
in the heart of several unsupervised machine translation works (Artetxe et al., 2018}
Lample et al., 2018)). As the Internet and Facebook are breaking into the develop-
ing world, very low resource machine translation has become more important and this
could be one place where the usage of phrase based machine translation would in-
crease. | hypothesize that if there is again a sufficiently large demand for phrase based
machine translation systems, my language model could be used as a basic building
block for a phrase based decoder. In addition to that, my language model could be

used independently in any setting where there is a need of large number of batch lan-
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guage model queries, such as n-best-list rescoring or OCR.

In Chapter 5, I have introduced a method to accelerate neural network training
in a multi-GPU setting, by reducing inter-GPU communication. Multi-GPU systems
are increasingly becoming the norm, rather than the exception: 10-GPU machines
are available for purchase commercially in late 2018 and computational clusters with
hundreds of GPUs are widespread. We want to be able to distribute neural network
training across as many GPUs and machines as possible and maintain close to linear
scaling in order to not waste resources. My methods will potentially only become more
popular over time and can be applied in principal to any neural network configuration
or task, not just machine translation. This is a very hot research area, as evidenced
by the large amount of published research over the past year (Aji and Heafield, 2017}
Mao et al.l 2018; [Shazeer and Stern, 2018; [Lin et al., 2018} Saunders et al.|, 2018;
Loshchilov and Hutter], 2016} (Gotmare et al., 2018)).

Potential impacts of optimization

Cost By optimizing for speed we can substantially decrease the hardware cost neces-
sary for conducting large scale NLP. In chapter 4, I show that in a language modeling
task, a specially crafted language model is twice more efficient per £ for hardware

compared to traditional CPU implementations.

Support for modern hardware The work I have done focuses primarily on parallel,
massively parallel and distribute(ﬂ hardware. As discussed in Chapter 2, with the evo-
lution of computer hardware, there are diminishing gains from adding extra transistors
on a single chip so hardware manufacturers have focused on multi-chip or multi-device
solutions. In Chapter 3, I show how a phrase table for statistical machine translation
designed for modern multi-core hardware can outperform previous solutions by an or-
der of magnitude. In Chapter 4, I show how n-gram language modeling could take
advantage of a GPU, a hardware with higher theoretical performance than a CPU. In
Chapter 5, I show that reducing communication is key in order to take advantage of

multi-GPU hardware for training neural machine translation models.

Quality improvement Gustafson’s law (Gustafson, 1988) points out that improving

performance means that more resources can be allocated to a given task and thus pro-

"Multi-device is a type of distributed
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duce a better result. Due to improved phrase Table and language model performance
we can increase the exploration of the search space and thus achieve better translations
or simply decrease the time necessary for a single experiment and allow researchers
to perform more in-depth hyperparameter exploration. In the neural machine transla-
tion setting, where it is frequently impossible to train a model to convergence due to
time constraints, improved performance means we can use larger models with more

parameters, or smaller models to a better convergence point.

Multi-core systems will not scale forever Empirical evidence suggests that we will
eventually hit a wall in the scaling of multi-core processors, because of an effect known
as Dark Silicon (Esmaeilzadeh et al., [2011). Dark silicon is an effect where as transis-
tors get smaller, they can no longer be powered at their nominal TDP. This is a com-
pletely a breakdown of Dennard scaling (Dennard et al., |1974), which states that as
transistors go smaller, their power density stays constant. According to Esmaeilzadeh
et al. (2011), at the 8nm level, dark silicon may account for 60-80% of the chip transis-
tors, meaning that the heat produced, when enough power is provided to power all the
transistors on the chip, will be way above the safe operating ranges. For a reference
point, Intel is expected to introduce their first 10nm chips in 2019 or 2020. This means
that in order to continue with performance improvements, we need to make best use
of the hardware available, and in the near future, distributed computing is likely to
become more prominent, as it deals with the heat dissipation issues. In the latter case
specifically, the key to good performance is the ability to make efficient use of memory
and limit communication.

In the era of big data, there is increasingly more data available for variety of NLP
tasks. We can not feasibly process all available data if we just rely on the incremental
performance improvements delivered by the annual hardware refreshes: the techniques

and ideas in the thesis will contribute to more efficient use of the available hardware.






Appendix A

Cyclical warmup and random learning

rate

When I tried T = 4 over T = 2 I achieved 7k faster WPS processing on 4 GPUs. When
I tried the same with 8 GPUs, I got 10k faster WPS, which is 30% higher. I wanted
to use the extra speedup to achieve even shorter end-to-end training time, however I
was unable to maintain equivalent model convergence in terms of epochs, which is
contrary to the goals I set up earlier: Faster training speed without a regression in
model quality or epochs to convergence. Figure shows my results. I could not get
T =4 to work on the shallow Romanian-English model even though it works well for
the deep English-German model. Cyclical learning rate warmup does help a bit with

the convergence, but not enough for it to be a viable strategy.

Language Cyclical Epochs to
guag T y WPS p

GPUs ]
pair warmup converge
4 ro-en 2 no 40.2k 10
4 ro-en 4 no 47.6k 16
8 ro-en 2 no 62.7k 10
8 ro-en 4 no 73.2k 24
8 ro-en 4 yes 73.2k 23

Table A.1: Cyclical warmup does improve the convergence when using larger T but even so we are
unable to maintain the same convergence rate in terms of epochs compared as using T = 2. I do not report
end-to-end training times, because different types of GPUs were used for some of the experiments,
which makes the metric inaccurate. Epochs to converge on the other hand is universal across models,

provided they use the same hyperparameters.
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After my experiments with cyclical learning rate, I attempted to use completely
random learning rate for each mini-batch, with the random number drawn from an
uniform distribution [0, T+ 0.00045], (0.00045 % 7 is the learning rate I used in the rest
of the experiments), but this did not help with convergence. Surprisingly, it did not

make convergence much worse either.
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