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Abstract

Developing high quality machine translation systems is a labour intensive, chal-
lenging and confusing process for newcomers to the field. We present a pair of
tools OpusCleaner and OpusTrainer that aim to simplify the process, reduce the
amount of work and lower the entry barrier for newcomers.

OpusCleaner is a data downloading, cleaning, and proprocessing toolkit. It is de-
signed to allow researchers to quickly download, visualise and preprocess bilingual
(or monolingual) data that comes from many different sources, each of them with
different quality, issues, and unique filtering/preprocessing requirements.

OpusTrainer is a data scheduling and data augmenting tool aimed at building
large scale, robust machine translation systems and large language models. It
features deterministic data mixing from many different sources, on-the-fly data
augmentation and more.

Using these tools, we showcase how we can use it to create high quality machine
translation model robust to noisy user input; multilingual models and terminology
aware models.

Preprint. Under review.
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1 Introduction

Machine translation is ubiquitous in modern society, however training high quality machine translation
systems is not trivial. A lot of the knowledge about how to build high quality systems is not well
defined, comes from experience and at times may seem counter intuitive. With OpusTrainer and
OpusCleaner we aim to explicitly address the main challenges in a user friendly manner and simplify
the workload for machine translation researchers.

There are several challenges when it comes to building high quality MT systems:

1.1 Data Sources

Parallel data for machine translation systems comes from many different sources, that have widely
varying quality. As an example, using Opus’s website1, and filtering parallel data sources for Chinese
to English, we are presented with a dozen different corpora. Here we find that some are in traditional
script, others are in simplified script, and these may or may not have been tokenized. This is before
noting any language identification issues. In order to build a high quality translation system, we need
to first have quality data, which necessarily means auditing each corpus manually and then deciding
how to preprocess it.

1.2 Training schedule

High quality machine translation systems require the use of backtranslation [Sennrich et al., 2016],
usually included in the form of pretraining. Often at the end of training models are fine tuned to
in-domain data. Without a training scheduler that supports different training stages, start-and-stop
training approach is necessary which presents challenge for automation and increases the burden on
the researcher.

1.3 Data Mixing

Noisy web-crawled data is useful for translation quality, but including it too early in the training may
lead to model divergence. Furthermore dirty data is orders of magnitude more available than clean
manually curated parallel data. Without any upsampling, clean data might be overshadowed by dirty
data, but upsampling is wasteful in terms of disk space. Finally, multilingual models require careful
data mixing such that low resource language languages are not overwhelmed by high resource ones,
without a training scheduler that supports data source mixing, this is achieved by upsampling low
resource data and carefully mixing and shuffling it in the training data.

1.4 Data Augmentation

Machine translation models are training on sanitised parallel data that is usually not representative of
noisy user input:

• Typos are quite rare in clean data, and spellchecker is often used on web-crawled data.
• All caps and title-case text are often missing.
• Emoji are basically non existent in parallel data.
• Models are not trained to cope with untranslatable tokens, which should be copied between

the source and the target language.

OpusTrainer and OpusCleaner are designed to resolve the above issues, and make it easy for a novice
user to build high quality translation systems, by explicitly setting the expectations that training data
must be carefully audited, and training data must be scheduled.

2 OpusCleaner

In order to address the daunting task of data cleaning, we developed OpusCleaner, a single graphical
frontend that does data downloading and cleaning, while being modular to allow for custom modifi-

1https://opus.nlpl.eu/
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cations depending on the language pair in question. We show screenshots of the welcome screen on
Figure 1.

Figure 1: Initial screen of OpusCleaner

2.1 Data Download

OpusCleaner provides seamless integration with MTData [Gowda et al., 2021] as shown on Figures
2 and 3. Datasets can be searched by languages and then downloaded individually, or in bulk. Basic
information about each dataset (number of lines, version, size) are shown, as well as link to the
dataset description page in Opus.

Additionally, adding one’s own custom datasets is possible.

2.2 Data Cleaning

Once all datasets are acquired, we can navigate to the Data Tailor screen (Figure 4) where we can
label every dataset with an arbitrary label (Such as medium or dirty) so that we can keep track of the
overall quality of each dataset.

2.2.1 Filter and preview

For each dataset, we visualise a sample of 3000 sentences that includes the first 100, the last 100
and random lines in between. From this window we can identidy the idiosyncraticies of that dataset
and add the appropriate filters to fix them. For example, if we spot that some lines are in the wrong
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Figure 2: Search dataset pane

Figure 3: Search and download dataset with links to dataset and basic information.

language (Figure 5) we can add language identifier filter and see the result of it in the preview window
(Figure 6).

Another example is finding mismatched punctuation on the source and the target (Figure 7). We can
then create a simple filter that fixes the issue and apply it, see the result (Figure 8).

2.2.2 Filters and pipelines

OpusCleaner is designed to clean data in a pipelined manner. Multiple filters are chained where every
filter receives data on stdin and outputs it on stdout. OpusCleaner itself takes care of managing the
pipeline. A typical pipeline would have a number of filters chained up as shown on Figure 9.

We support 28 built in filters with custom user filters supported by simply providing a json configura-
tion file that specifies path to filter executable and optionally what arguments it should have.

2.2.3 Processsing all data

Once we have determined filters for every single downloaded dataset, we run a command line
utility that does batch processing of all datasets, taking care of also cutting up files and parallelising
processing. Once all processing is done, we provide an utility to deduplicate the data but preserving
the split of datasets and then the user can proceed with training the machine translation system.

OpusCleaner2 is open source, under active development and available for free for anyone to use.

2https://github.com/hplt-project/OpusCleaner
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Figure 4: Initial screen of data tailoring, as well as dataset labelling.

Figure 5: Initial view of dataset cleaning with some sentences obviously in the wrong language.

3 OpusTrainer

As discussed in section 1, training high quality machine translation systems requires carefully
combining parallel data from different sources and quality levels; applying on the fly modifications to
it and more.

This is challenging to achieve with neural network toolkits that make use of static training data,
because ideally we want to modify the data mixture and potentially augment it on the fly, without
having to prepare the data first and write it to disk which is wasteful.

Multilingual model training The problem is exacerbated when training many-to-many or English-
to-many multilingual models where high resource languages would often have orders of magnitude
more data than low resource languages. In order for a multilingual model to train well in this setting,
it needs to see balanced data from all languages [Freitag and Firat, 2020]. Doing this by concatenating
and upsampling data (in order to get equal amounts of data seen for all languages), would waste
multiple terabytes of disk space.

3.1 Data Scheduling

OpusTrainer solves this problem by streaming and mixing data from multiple sources. OpusTrainer
uses a simple yaml configuration file where the user can declare all of their data sources and a desired
mix of them for different stages of training. OpusTrainer then reads in the data from different sources
and then outputs the desired mix to stdout. OpusTrainer is meant to be used with neural network
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Figure 6: Fasttext langid filter removes lines in wrong language.

Figure 7: Mismatched punctuation on the source and the target.

toolkits that support reading data from stdin such as Marian [Junczys-Dowmunt et al., 2018], but
it can also output the desired data mix to a file, making it usable with all toolkits. An example
configuration that describes a full training run with various data mixings for different stages of
training can be seen on Figure 10.

3.2 Data Augmentation

Humans are very robust to decoding noisy texts, but this can pose a major challenge to machine
translation systems due to the way we collect our training data:

• Title Case and Upper Case parallel data is quite rare in training data, and is sometimes
regularised during acquisition.

• Typos are also comparatively rare in training data, because either we use clean sources or
we perform spellchecking on web crawled sources.

• Emojis, which human readers expect to be copied over from the source to the target, are
not seen during training, because typically lines containing emojis are removed from the
training data at preprocessing steps.
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Figure 8: Fixing mismatched punctuation.

Figure 9: Adding multiple filters and visualising the difference.

In order to alleviate these issues, OpusTrainer provides multiple data modifiers which can be applied
on the fly, at random on the training data:

• UpperCaser and TitleCaser

• Typo modifier, which inserts typos in words during training

• Merge modifier, which randomly merges several input sentences together to help the model
be more robust to longer sentences.

• Noise modifier, that generates random sentences consisting of unicode noise, identical on
both the source and the target side. This modifier teaches the model to copy unknown strings
to the target side.

• Inline Noise modifier: A more complicated version of the above that uses word alignments
in order to inject noisy unicode characters (including Emoji) in approximately the same
logical place on both the source and the target side. This modifier teaches the model that
unknown sequences of <unk> characters should be just copied on the target side.
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Figure 10: OpusTrainer basic configuration defining the data scheduling for training a model.

All of those modifiers are applied to each sentence in the training data with a user defined probability
as shown on Figure 11.

3.3 Terminology

OpusTrainer is able to leverage word alignment information to produce terminology augmented
systems, precisely as the one described in Bogoychev and Chen [2023]. This is achieved by finding
bijective word alignment mappings between the source and the target sentences and at randomly
injecting terminology hints in the source, precisely like the one show on 12.

These terminology hints can then be used at inference time, and the model will know how to
incorporate the desired terminology hint at the target side. The relevant training options are shown on
figure 13

OpusTrainer is open source and available on GitHub,3 with ample documentation and examples.
OpusTrainer is designed to be used mainly with neural network toolkits that read in training input
on stdin, as it takes care of shuffling between epochs, resuming training and all other functions

3https://github.com/hplt-project/OpusTrainer
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Figure 11: Different modifiers specified in YAML format to be used during training.

Where is the airport? ↔ Wo ist der Flughafen?
Where is the airport __target__ Flughafen __done__? ↔ Wo ist der Flughafen?

Figure 12: Terminology augmentation in practise. During training it is hinted that the target word
Flughafen corresponds to Airport, so that at inference when providing the model with terminology
hints it will know how to incorporate them at the output.

normally done by the data module of a neural network toolkit. It can, however, also be used to write
a preprocessed training corpus on disk so toolkits that do not support reading stdin can also make use
of it.

4 Case study: A Robust French-English system

We highlight the use cases of data augmentation by using OpusCleaner and OpusTrainer to train a
French-English machine translation system. We define robustness as the following criteria, which are
all common concerns for real world web text.

• Accurate translation of URLs (URLs need to be copied to the target side without any
modification).

• Accurate copy behaviour on OOV tokens such as emoji or snippets of foreign language texts.
The latter often occur in wikipedia, where foreign language terms such as named entities
appear alongside their local language transliteration.

• No quality loss when translating Upper Case and Title case texts compared to normal cased
text (All caps and tittle case often appear in tittles of newspapers).

• Robustness to typos (social media users).

Figure 13: Tag modifier is used to add terminology hints to the source during training. Values of 3%
to 7% seem to work well in practise.
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Figure 14: Example cases of noise/emoji inside the source and the corresponding target translation.
We aim for our model to be able to reproduce those at decode time.

4.1 Test set design

As a baseline test set we use newstest15 and we make several version of it to more accurately measure
robustness.

• Title Case version of the test set
• All caps version of the test set
• Typo-ed version of the test set, where we insert 4 typos in each line using the python’s typo

library.4

• Emoji augmented test set where we insert random emoji in corresponding places on the
source and the target, by using precomputed word alignments in order to place the emoji in
both texts in the correct corresponding location. Example on figure 14.

• Random unicode sequence augmented test set where the random unicode sequences are
inserted in the same manner as the emoji. Example on figure 14.

On top of that we prepare a dataset of sentences containing URLs from the paracrawl project. We
take sentences containing exactly the same URLs on both the source and the target, then we remove
the URLs and take the top 1500 sentences according to their bicleaner-ai ["Zaragoza-Bernabeu et al.,
"2022"] score and reinsert the URLs.

For quality we report BLEU, but we also use several specific metrics. For the URL test set we measure
the percentage of exact matches of URLs. For datasets with tittle case and all caps we measure as
well BLEU-uncased to see how good translation quality is, regardless of the case outputted. Finally,
for datasets with emoji and unicode sequences, we extract all of the OOV characters and measure
ChrF [Popović, 2015] on them only, so that we can see how effective our system is at copying them
to the target side.

4.2 Model

For training data we use all of the available French-English data accessible through MTData [Gowda
et al., 2021] and we clean it using OpusCleaner.

We split the data into four categories based on its providence and subjective perceived quality through
manual inspection:

• Canonically clean datasets such as Europarl, Un are designated as clean (22M parallel
sentences).

• Slightly less clean data (9M), designated as cleanish.
• Not clean data, but not generated from crawled sources (16M), designated as medium.
• Web crawled data is designated as dirty (363M)

We use Marian [Junczys-Dowmunt et al., 2018] to train transformer-big Vaswani et al. [2017] models
on the training data with varying degree of data augmentation. We train 7 different models with

4https://pypi.org/project/typo/
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various additional perks, some related to data augmentation, some not in order to show how we
progressively achieve a more robust model.

1. Pure model
2. + Sentencepiece sampling [Kudo and Richardson, 2018]. Sentencepiece sampling makes

splits of words non-deterministic, potentially making unseen words handling more robust.
3. + UpperCase and LowerCase
4. + typos
5. + Unicode Vocabulary Fallback. Sentencepiece models can’t split OOV tokens such as

Chinese characters into subwords, but if we consider that every character is represented by
unicode bytes, we can split unseen characters such as emoji and hanzi

6. + noisy sentences
7. + inline noise

4.3 Results

We present our results on table 1. We train 7 different systems with different degrees of augmentation.
We can see that progressively, as we add more modifiers to the training set up, the model becomes
more robust to various sources of noisy user input. System 3 onwards have capture TitleCase and
UpperCase with relatively small performance loss compared to plain sentences. System 5 that uses
UTF fallback for OOV tokens starts capturing emoji and other OOV tokens. Systems 6 and 7 enhance
the training data with lots of noisy examples and that leads to really good copy rate of OOV tokens to
the target side, as shown in the two ChrF columns.

newstest15 BLEU

plain TC
uncased TC CAPS

uncased CAPS typo noise noise1

chrf emoji emoji1

chrf
url

BLEU
URL only
precision

baseline (1) 40 34.2 8.6 21.5 20.5 29.6 34.3 0 35.8 0.1 62.7 90%
+ spm sample (2) 39 36.9 9.1 29.2 21.2 30.5 33.4 0.1 34.7 0.2 61.4 87%

+ UC/LC noise (3) 38.4 37.3 36.3 34.5 34.5 29.7 32.9 0.1 34.3 0.2 60.9 87%
+ typos (4) 38.9 38 36.8 35.1 35.1 36.7 33.5 0.1 34.2 5.2 61.2 86%

+ UTF-8 fallback (5) 38.5 38 36.8 34.7 34.7 36.8 35.2 55.1 37 64.9 61 85%
+ noise (6) 39.6 39.1 37.9 35.9 35.9 37.6 38.9 87 38.7 72.3 61.3 86%

+ inline noise (7) 39.2 38.3 37.2 35.3 35.3 37.5 41.5 92 39.9 80.7 61.2 86%

Table 1: Results table
1 ChrF score was calculated on the noise/emoji only, meaning we only measure how well our model
copies just OOV tokens without considering translation quality.

4.3.1 Caveats

There are some caveats that come with our test results. The more modifiers are used, the more difficult
the training data seems to be to model, and therefore it takes more iterations through the training data
to achieve convergence. Therefore all models presented have seen different amounts of training data.
We will control for this setting in future work.

Furthermore we see slight degradation in terms of translation quality when we add modifications to
the training data on the plain test set. This suggests that the gains we have are not entirely for free.
Finally, we observe slight deterioration on URLs. We measure only exact matches on URLs because
an almost correct URL is not useful. This regression bodes for further investigation.

5 Conclusion

We present a feature complete data preprocessing and data scheduling toolkit for training machine
translation systems (but also just as useful for Large Language Models). Our tools are designed with
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novice and experts in mind so that they lower the entry barrier to the field of machine translation,
while still allowing for state of the art results. Our data augmentation utilities are crucial for producing
robust machine translation systems, as well as terminology systems [Bogoychev and Chen, 2023].
Our toolkit was developed concurrently and independently to Sotastream [Post et al., 2023] and
provides similar functionality.
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