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Efficiency Strategies Explored

We study various strategies for speed- and
size-optimized NMT (student models):
Knowledge distillation

Optimize students on teacher’s distilled data
SSRU decoder

Simple RNN-based decoder instead of self-att.
Deep encoder, shallow decoder

Increase encoder depth; decrease decoder depth
Shortlisting

Reduce softmax layer to source-aligned tokens
IBDecoder

Generate left and right words in parallel
Structural pruning with regularisation

Prune out redundant computations
Quantisation (8bit)

Quantise FP32 models into 8-bit integers

Model Layers Dims Quality Speed
Enc. Dec. Emb. FFN COMET Time

Teacher 6 6 1024 4096 0.591 —
Large 12 1 1024 3072 0.590 170.4
Base 12 1 512 2048 0.584 57.7
Tiny 12 1 256 1536 0.552 23.4
Micro 12 1 256 1024 0.539 20.9
Base 6 2 512 2048 0.588 50.5
Tiny 6 2 256 1536 0.554 19.6
Tied.Tiny 6 2 256 1536 0.547 17.7
Tied.Tiny 8 4 256 1536 0.562 23.0
Base.Wide 12 1 2048 2048 0.577 395.4
Base.Wide 6 2 2048 2048 0.598 374.7
Table: Architectures for the different student models. Quality
and speed evaluated and averaged across WMT16–19.
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Figure: Pareto trade-off between quality and speed for the CPU throughput task. We highlight pruned models with green circles.

Interleaved Bidirectional Decoder

3 Semi-autoregressive model by producing
multiple tokens per decoding step

3 Generate tokens from the left and the
right directions simultaneously

Model BLEU COMET Speedup
12-1.base 44.06 0.584 1.00

+ IBDecoder 43.84 0.561 1.12
6-2.tiny 42.76 0.554 1.00

+ IBDecoder 41.88 0.507 1.15
Results of IBDecoder compared to the baseline. Quality and
speed were evaluated and averaged across WMT16–19.

Structural pruning

Removing entire attention heads and FFN
connections makes models smaller and
faster with no sparsity support needed.

Figure: Structural pruning of nodes in FFN layers.

Aided Regularisation

We structurally pruned our transformer
student models using group lasso performed
under gradient-aided regularisation.
In practice, it means adding a new scalar
γ alongside an already existing λ with B

being a processed batch:
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γ are exponentially smoothed as training
progresses:

γB ← αγB + (1 − α) ∗ γB−1

With Wi being a regularised layer and ∇W

as accumulated gradients in a model, the
gradient-aided γ function is defined as:
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Pruning Results

We focused on pruning attention and feed-
forward layers in encoder only.

Quality Sparsity
Model BLEU COMET Att. FFN Time ×

8-4.tiny.tied 31.9 0.450 0% 0% 318.8 1.00
+ prune 31.9 0.460 46% 20% 254.1 1.25

12-1.base 34.0 0.510 0% 0% 655.5 1.00
+ prune 33.7 0.515 63% 20% 444.7 1.47

Table: A performance of pruned models in comparison to the
baselines. Quality evaluated on the WMT22 testset.


